Skip to main content
Log in

The inferior temporal cortex: Architecture, computation, and representation

  • Published:
Journal of Neurocytology

Abstract

Neurons in the inferior temporal cortex (IT), an area crucially involved in visual object recognition in monkeys, show the visual response properties and anatomical/chemical nature which are distinct from those in the cortical areas that feed visual inputs to the IT. Earlier physiological studies showed that IT neurons have large receptive fields covering the center and contralateral (often bilateral) visual fields, stimulus selectivity for images of complex objects or shapes, and translation invariance of the stimulus selectivity. Recent studies have revealed new aspects of their properties such as invariant selectivity for shapes despite drastic changes in various physical attributes of stimuli, latent excitatory inputs masked by stimulus-specific GABAergic inhibition, selectivity for binocular disparity and 3-dimensional surface structures, profound effects of learning on the stimulus selectivity, and columnar clustering of neurons with similarstimulus selectivity for shapes and other object features. Another line of research using histological techniques have revealed that pyramidal neurons in the IT are larger in the size of dendritic arbors, in the number of dendritic branches and spines, and in the size and distribution of horizontal axonal arbors than those in the earlier areas, allowing them to integrate a larger population of afferents and process more diverse inputs. The concentration of several neurochemicals including those related to synaptic transmission or plasticity changes systematically towards the IT along the occipitotemporal pathway. Many of the characteristics of IT neurons parallel or explain certain aspects of visual object perception, although the behavioral relevance has yet to be addressed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amir, Y., Harel, M. &; Malach, R. (1993) Cortical hierarchy reflected in the organization of intrinsic connections in macaque monkey visual cortex. Journal of Comparative Neurology 334, 19–46.

    PubMed  Google Scholar 

  • Baker, C. I., Behrmann, M. &; Olson, C. R. (2002) Impact of learning on representation of parts and wholes in monkey inferotemporal cortex. Nature Neuroscience 5, 1210–1216.

    PubMed  Google Scholar 

  • Baylis, G. C. &; Driver, J. (2001) Shape-coding in IT cells generalizes over contrast and mirror reversal, but not figure-ground reversal. Nature Neuroscience 4, 937–942.

    PubMed  Google Scholar 

  • Baylis, G. C., Rolls, E. T. &; Leonard, C. M. (1987) Functional subdivisions of the temporal lobe neocortex. Journal of Neuroscience 7, 330–342.

    PubMed  Google Scholar 

  • Booth, M. C. A. &; Rolls, E. T. (1998) View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. Cerebral Cortex 8, 510–523.

    PubMed  Google Scholar 

  • Boussaoud, D., Desimone, R. &; Ungerleider, L. G. (1991) Visual topography of area TEO in the macaque. Journal of Comparative Neurology 306, 554–575.

    PubMed  Google Scholar 

  • Buckley, M. J., Gaffan, D. &; Murray, E. A. (1997) Functional double dissociation between two inferior temporal cortical areas: Perirhinal cortex versus middle temporal gyrus. Journal of Neurophysiolgy 77, 587–598.

    Google Scholar 

  • Buffalo, E. A., Ramus, S. J., Clark, R. E., Teng, E., Squire, L. R. &; Zola, S. M. (1999) Dissociation between the effects of damage to perirhinal cortex and area TE. Learning &; Memory 6, 572–599.

    Google Scholar 

  • deCharms, R. C. &; Zador, A. (2000) Neural representation and the cortical code. Annual Review of Neuroscience 23, 613–647.

    PubMed  Google Scholar 

  • Desimone, R. (1992) The physiology of memory: Recordings of things past. Science 258, 245–246.

    PubMed  Google Scholar 

  • Desimone, R., Albright, T. D., Gross, C. G. &; Bruce, C. (1984) Stimulus-selective properties of inferior temporal neurons in the macaque. Journal of Neuroscience 4, 2051–2062.

    PubMed  Google Scholar 

  • Desimone, R., Fleming, J. &; Gross, C. G. (1980) Prestriate afferents to inferior temporal cortex: An HRP study. Brain Research 184, 41–55.

    PubMed  Google Scholar 

  • Desimone, R. &; Gross, C. G. (1979) Visual areas in the temporal cortex of the macaque. Brain Research 178, 363–380.

    PubMed  Google Scholar 

  • Dicarlo, J. J. &; Maunsell, J. H. R. (2000) Form representation in monkey inferotemporal cortex is virtually unaltered by free viewing. Nature Neuroscience 3, 814–821.

    PubMed  Google Scholar 

  • Elston, G. N. (2003) Cortical heterogeneiety: Implications for visual processing and polysensoryintegration. Journal of Neurocytology 31, 317–335.

    Google Scholar 

  • Elston, G. N. &; Rosa, M. G. (1998) Morphological variation of layer III pyramidal neurones in the occipitotemporal pathway of the macaque monkey visual cortex. Cerebral Cortex 8, 278–294.

    PubMed  Google Scholar 

  • Elston, G. N. &; Rosa, M. G. (2000) Pyramidal cells, patches, and cortical columns: A comparative study of infragranular neurons in TEO, TE, and the superior temporal polysensory area of the macaque monkey. Journal of Neuroscience 20, RC117.

  • Fujita, I. (1993) Columns in the inferior temporal cortex: Machinery for visual representation of objects. Biomedical Research 14(Suppl. 4), 21–27.

    Google Scholar 

  • Fujita, I. (1995) The warp and weft in the inferior temporal cortex. In Emotion, Memory and Behavior-Studies on Human and Nonhuman Primates (edited by Nakajima, T. &; Ono, T.) pp. 79–89. Tokyo: Japan Scientific Societies Press.

    Google Scholar 

  • Fujita, I. &; Fujita, T. (1996) Intrinsic connections in the macaque inferior temporal cortex. Journal of Comparative Neurology 368, 467–486.

    PubMed  Google Scholar 

  • Fujita, I., Kato, M., Murayama, Y. &; Uka, T. (1996) Functional architecture and synaptic plasticity in the monkey inferior temporal cortex. In Integrative and Molecular Approach to Brain Function (edited by Ito, M. &; Miyashita, Y.) pp. 147–155. Amsterdam: Elsevier.

    Google Scholar 

  • Fujita, I., Tanaka, K., Ito, M. &; Cheng, K. (1992) Columns for visual features of objects in monkey inferotemporal cortex. Nature 360, 343–346.

    PubMed  Google Scholar 

  • Gallant, J. L., Braun, J. &; van Essen, D. C. (1993) Selectivity for polar, hyperbolic and cartesian gratings in macaque visual cortex. Science 259, 100–103.

    PubMed  Google Scholar 

  • Gattass, R., Gross, C. G. &; Sandell, J. H. (1981) Visual topography of V2 in the macaque. Journal of Comparative Neurology 201, 519–539.

    PubMed  Google Scholar 

  • Gattass, R., Sousa, A. P. B. &; Gross, C. G. (1988) Visuotopic organization and extent of V3 and V4 of the macaque. Journal of Neuroscience 8, 1831–1845.

    PubMed  Google Scholar 

  • Gawne, T. J. &; Richmond, B. J. (1993) How independent are the messages carried by adjacent inferior temporal cortical neurons? Journal of Neuroscience 13, 2758–2771.

    PubMed  Google Scholar 

  • Gochin, P. M., Colombo, M., Dorfman, G. A., Gerstein, G. L. &; Gross, C. G. (1994) Neural ensemble coding in inferior temporal cortex. Journal of Neurophysiology 71, 2325–2337.

    PubMed  Google Scholar 

  • Gochin, P. M., Miller, E. K., Gross, C. G. &; Gerstein, G. (1991) Functional interactions among neurons in inferior temporal cortex of the awake macaque. Experimental Brain Research 84, 505–516.

    Google Scholar 

  • Gross, C. G. (1973) Visual functions of inferotemporal cortex. In Handbook of Sensory Physiology (edited by Jung, R.) pp. 451–482. Berlin: Springer Verlag.

    Google Scholar 

  • Gross, C. G., Bender, D. B. &; Rocha-Miranda, C. E. (1969) Visual receptive fields of neurons in inferotemporal cortex of the monkey. Science 166, 1303–1306.

    PubMed  Google Scholar 

  • Gross, C. G., Bender, D. B. &; Mishkin, M. (1977) Contributions of the corpus callosum and the anterior commissure to visual activation of inferior temporal neurons. Brain Research 131, 227–239.

    PubMed  Google Scholar 

  • Gross, C. G. &; Mishkin, M. (1977) The neural basis of stimulus equivalence across retinal translation. In Lateralization in the Nervous System (edited by Harnad, S., Doty, R., Jaynes, J., Goldstein, L. &; Krauthamer, G.) pp. 109–122. New York: Academic Press.

    Google Scholar 

  • Gross, C. G., Rocha-Miranda, C. E. &; Bender, D. B. (1972) Visual properties of neurons in inferotemporal cortex of the macaque. Journal of Neurophysiology 35, 96–111.

    PubMed  Google Scholar 

  • HegdÉ, J. &; van Essen, D. C. (2000) Selectivity for complex shapes in primate visual area V2. Journal of Neuroscience 20, RC61 (1–6).

    PubMed  Google Scholar 

  • Hendry, S. H. C., Schwark, H. D., Jones, E. G. &; Yan, J. (1987) Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. Journal of Neuroscience 7, 1503–1519.

    PubMed  Google Scholar 

  • Hinkle, D. A. &; Connor, C. E. (2001) Disparity tuning in macaque area V4. NeuroReport 12, 365–369.

    PubMed  Google Scholar 

  • Hinkle, D. A. &; Connor, C. E. (2002) Three-dimensional orientation tuning in macaque area V4. Nature Neuroscience 5, 665–670.

    PubMed  Google Scholar 

  • Hubel, D. H. &; Wiesel, T. N. (1968) Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology 195, 215–243.

    PubMed  Google Scholar 

  • Ito, M., Fujita, I., Tamura, H. &; Tanaka, K. (1994) Processing of contrast polarity of visual images in inferotemporal cortex of the macaque monkey. Cerebral Cortex 4, 499–508.

    PubMed  Google Scholar 

  • Ito, M., Tamura, H., Fujita, I. &; Tanaka, K. (1995) Size and position invariance of neuronal responses in monkey inferotemporal cortex. Journal of Neurophysiology 73, 218–226.

    PubMed  Google Scholar 

  • Janssen, P., Vogels, R. &; Orban, G. A. (1999) Macaque inferior temporal neurons are selective for disparity-defined three-dimensional shapes. Proceedings of National Academy of Sciences, USA 96, 8217–8222.

    Google Scholar 

  • Janssen, P., Vogels, R. &; Orban, G. A. (2000a) Three-dimensional shape coding in inferior temporal cortex. Neuron 27, 385–397.

    PubMed  Google Scholar 

  • Janssen, P., Vogels, R. &; Orban, G. A. (2000b) Selectivity for 3D shape that reveals distinct areas within macaque inferior temporal cortex. Science 288, 2054–2056.

    PubMed  Google Scholar 

  • Jolicoeur, P. (1987) A size-congruency effect in memory for visual shape. Memory and Cognition 15, 531–543.

    Google Scholar 

  • Kato, M., Uka, T. &; Fujita, I. (1998) Reexamination of columnar organization in monkey inferior temporal cortex: Stimulus selectivity tested with a large number of predetermined stimuli. Society for Neuroscience Abstracts 24, 900.

  • Kato, M., Uka, T. &; Fujita, I. (1999) How selective and reliable are visual responses of inferior temporal cortex neurons?: Comparison between anaesthetized and awake conditions. Society for Neuroscience Abstracts 25, 918.

    Google Scholar 

  • Kawasaki, K., Tamura, H., Miyata, K. &; Fujita, I. (2000) Quantitative comparison of intrahemispheric and interhemispheric responses of area TE neurons in macaques. Society for Neuroscience Abstracts 26, 1199.

  • Kobatake, E. &; Tanaka, K. (1994) Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. Journal of Neurophysiology 71, 856–867.

    PubMed  Google Scholar 

  • Kobatake, E., Wang, G. &; Tanaka, K. (1998) Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. Journal of Neurophysiology 80, 324–330.

    PubMed  Google Scholar 

  • Komatsu, H., Ideura, Y., Kaji, S. &; Yamane, S. (1992) Color selectivity of neurons in the inferior temporal cortex of the awake macaque monkey. Journal of Neuroscience 12, 408–424.

    PubMed  Google Scholar 

  • Kondo, H., Hashikawa, T., Tanaka, K. &; Jones, E. G. (1994) Neurochemical gradient along the monkey occipito-temporal cortical pathway. NeuroReport 5, 613–616.

    PubMed  Google Scholar 

  • KovÁcs, G., Vogels, R. &; Orban, G. A. (1995) Selectivity of macaque inferior temporal neurons for partially occluded shapes. Journal of Neuroscience 15, 1984–1997.

    PubMed  Google Scholar 

  • Lewis, M. E., Mishkin, M., Bragin, E., Brown, R. M., Pert, C. B. &; Pert, A. (1981) Opiate receptor gradients in monkey cerebral cortex: Correspondence with sensory processing hierarchies. Science 211, 1166–1169.

    PubMed  Google Scholar 

  • Logothetis, N. K. &; Sheinberg, D. L. (1996) Visual object recognition. Annual Review of Neuroscience 19, 577–621.

    PubMed  Google Scholar 

  • Lowe, D. G. (2000) Towards a computational model for object recognition in IT cortex. Proceedings of First IEEE International Workshop on Biologically Motivated Computer Vision.

  • Lueschow, A., Miller, E. K. &; Desimone, R. (1994) Inferior temporal mechanisms for invariant object recognition. Cerebral Cortex 5, 523–531.

    Google Scholar 

  • Lund, J. S., Yoshioka, T. &; Levitt, J. B. (1993) Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. Cerebral Cortex 3, 148–162.

    PubMed  Google Scholar 

  • Missal, M., Vogels, R. &; Orban, G. A. (1997) Responses of macaque inferior temporal neurons to overlapping shapes. Cerebral Cortex 7, 758–767.

    PubMed  Google Scholar 

  • Miyashita, Y. (1993) Inferior temporal cortex: Where visual perception meets memory. Annual Review of Neuroscience 16, 245–264.

    PubMed  Google Scholar 

  • Miyata, K., Kawasaki, K., Wang, Q. X., Tamura, H. &; Fujita, I. (2000) Columnar interhemispheric connections between area TEs in macaque. Society for Neuroscience Abstracts 26, 1199.

    Google Scholar 

  • Murayama, Y., Fujita, I. &; Kato, M. (1997) Contrasting forms of synaptic plasticity in monkey inferotemporal and primary visual cortices. NeuroReport 8, 1503–1508.

    PubMed  Google Scholar 

  • Nelson, M. E. &; Bower, J. M. (1990) Brain maps and parallel computers. Trends in Neurosciences 13, 403–408.

    PubMed  Google Scholar 

  • Nelson, R. B., Friedman, D. P., O'Neill, J. B., Mishkin, M. &; Routtenberg, A. (1987) Gradients of protein kinase C substrate phosphorylation in primate visual system peak in visual memory storage areas. Brain Research 416, 387–392.

    PubMed  Google Scholar 

  • Op de Beeck, H. &; Vogels, R. (2000) Spatial sensitivity of macaque inferior temporal neurons. Journal of Comparative Neurology 426, 505–518.

    PubMed  Google Scholar 

  • Parker, A. J. &; Newsome, W. T. (1998) Sense and the single neuron: Probing the physiology of perception. Annual Review of Neuroscience 21, 227–277.

    PubMed  Google Scholar 

  • Pasupathy, A. &; Connor, C. E. (1999) Responses to contour features in macaque area V4. Journal of Neurophysiology 82, 2490–2502.

    PubMed  Google Scholar 

  • Perrett, D. I., Hietanen, J. K., Oram, M. W. &; Benson, P. J. (1992)Organizationandfunctions of cells responsive to faces in the temporal cortex. Philosophical Transactions of the Royal Society of London Series B Biological Sciences 335, 23–30.

    Google Scholar 

  • Richmond, B. J., Optican, L. M., Podell, M. &; Spitzer, H. (1987) Temporal encoding of twodimensional patterns by single units in primate inferior temporal cortex. I. Response characteristics. Journal of Neurophysiology 57, 132–146.

    PubMed  Google Scholar 

  • Rocha-Miranda, C. E., Bender, D. B., Gross, C. G. &; Mishkin, M. (1975) Visual activation of neurons in inferotemporal cortex depends on striate cortex and forebrain commissures. Journal of Neurophysiology 38, 475–491.

    PubMed  Google Scholar 

  • Rodman, H. R., Skelly, J. P. &; Gross, C. G. (1991) Stimulus selectivity and state dependence of activity in inferior temporal cortex of infant monkeys. Proceedings of National Academy of Sciences USA 88, 7572–7575.

    Google Scholar 

  • Rollenhagen, J. E. &; Olson, C. R. (2000) Mirrorimage confusion in single neurons of the macaque inferotemporal cortex. Science 287, 1506–1508.

    PubMed  Google Scholar 

  • Rolls, E. T. &; Baylis, G. C. (1986) Size and contrast have only small effects on the responses to faces of neurons in the cortex of the superior temporal sulcus of the monkey. Experimental Brain Research 65, 38–48.

    Google Scholar 

  • Rolls, E. T. &; TovÉe, M. J. (1995) Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. Journal of Neurophysiology 73, 713–726.

    PubMed  Google Scholar 

  • SÁry, G., Vogels, R., KovÁcs, G. &; Orban, G. A. (1995) Responses of monkey inferior temporal neurons to luminance-, motion-, and texture-defined gratings. Journal of Neurophysiology 73, 1341–1354.

    PubMed  Google Scholar 

  • Saleem, K. S., Tanaka, K. &; Rockland, K. S. (1993) Specific and columnar projection from area TEO to TE in the macaque inferotemporal cortex. Cerebral Cortex 3, 454–464.

    PubMed  Google Scholar 

  • Schwartz, E. L., Desimone, R., Albright, T. D. &; Gross, C. G. (1983) Shape recognition and inferior temporal neurons. Proceedings of National Academy of Sciences USA 80, 5776–5778.

    Google Scholar 

  • Sereno, A. B. &; Maunsell, J. H. (1998) Shape selectivity in primate lateral intraparietal cortex. Nature 395, 500–503.

    PubMed  Google Scholar 

  • Sheinberg, D. L. &; Logothetis, N. K. (1997) The role of temporal cortical areas in perceptual organization. Proceedings of National Academy of Sciences USA 94, 3408–3413.

    Google Scholar 

  • Sheinberg, D. L. &; Logothetis, N. K. (2001) Noticing familiar objects in real world scenes: The role of temporal cortical neurons in natural vision. Journal of Neuroscience 21, 1340–1350.

    PubMed  Google Scholar 

  • Shimojo, S., Paradiso, M. &; Fujita, I. (2001) What visual perception tells us about mind and brain. Proceedings of National Academy of Sciences USA 98, 12340–12341.

    Google Scholar 

  • Shiwa, T. (1987) Corticocortical projections to the monkey temporal lobe with particular reference to the visual processing pathways. Archives Italiennes de Biologie 125, 139–154.

    PubMed  Google Scholar 

  • Sigala, N. &; Logothetis, N. K. (2002) Visual categorization shapes feature selectivity in the primate temporal cortex. Nature 415, 318–320.

    PubMed  Google Scholar 

  • Stryker, M. P. (1992) Elements of perception. Nature 360, 301–302.

    PubMed  Google Scholar 

  • Suzuki, W. A. (1996a) The anatomy, physiology and function of the perirhinal cortex. Current Opinion in Neurobiology 6, 179–186.

    PubMed  Google Scholar 

  • Suzuki, W. A. (1996b) Neuroanatomy of the monkey entorhinal, perirhinal and parahippocampal cortices: Organization of cortical inputs and interconnections with amygdala and striatum. Seminars in the Neurosciences 8, 3–12.

    Google Scholar 

  • Tamura, H., Kaneko, H., Kawasaki, K. &; Fujita, I. (2003) Inhibitory mechanisms underlying stimulusselective responses of inferior temporal neurons. In Neural Basis of Early Vision (edited by Kaneko, A) pp. 238–242. Berlin: Springer Verlag.

    Google Scholar 

  • Tamura, H. &; Tanaka, K. (2001) Visual response properties of cells in the ventral and dorsal parts of the macaque inferotemporal cortex. Cerebral Cortex 11, 384–399.

    PubMed  Google Scholar 

  • Tanaka, K. (1996) Inferotemporal cortex and object vision. Annual Review of Neuroscience 19, 109–139.

    PubMed  Google Scholar 

  • Tanaka, K., Saito, H.-A., Fukada, Y. &; Moriya, M. (1991) Coding visual images of objects in the inferotemporal cortex of the macaque monkey. Journal of Neurophysiology 66, 170–189.

    PubMed  Google Scholar 

  • Tanaka, H., Uka, T., Yoshiyama, K., Kato, M. &; Fujita, I. (2001) Processing of shape defined by disparity in monkey inferior temporal cortex. Journal of Neurophysiology 85, 735–744.

    PubMed  Google Scholar 

  • Tanigawa, H. &; Fujita, I. (1997) Topographic relation between horizontal projections from adjacent sites in the macaque inferior temporal cortex: A double anterograde labeling study. Society for Neuroscience Abstracts 23, 2062.

    Google Scholar 

  • Tanigawa, H., Fujita, I., Kato, M. &; Ojima, H. (1998) Distribution, morphology, and gamma-aminobutyric acid immunoreactivity of horizontally projecting neurons in the macaque inferior temporal cortex. Journal of Comparative Neurology 401, 129–143.

    PubMed  Google Scholar 

  • Tochitani, S., Liang, F., Watakabe, A., Hashikawa, T. &; Yamamori, T. (2001) The occ1 gene is preferentially expressed in the primary visual cortex in an activity-dependent manner:Apattern of gene expression related to the cytoarchitectonic area in adult macaque cortex. European Journal of Neuroscience 13, 297–307.

    PubMed  Google Scholar 

  • TovÉe, M. J., Rolls, E. T. &; Azzopardi, P. (1994) Translation invariance in the responses to faces of single neurons in the temporal visual cortical areas of the alert macaque. Journal of Neurophysiology 72, 1049–1060.

    PubMed  Google Scholar 

  • TovÉe, M. J., Rolls, E. T., Treves, A. &; Bellis, R. P. (1993) Information encoding and the responses of single neurons in the primate temporal visual cortex. Journal of Neurophysiology 70, 640–654.

    PubMed  Google Scholar 

  • Tsunoda, K., Yamane, Y., Nishizaki, M. &; Tanifuji, M. (2001) Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nature Neuroscience 4, 832–838.

    PubMed  Google Scholar 

  • Uka, T., Tanaka, H., Yoshiyama, K., Kato, M. &; Fujita, I. (2000) Disparity selectivity of neurons in monkey inferior temporal cortex. Journal of Neurophysiology 84, 120–132.

    PubMed  Google Scholar 

  • Ullman, S. (1989) Aligning pictorial descriptions: An approach to object recognition. Cognition 32, 193–254.

    PubMed  Google Scholar 

  • Ullman, S., Vidal-Naquet, M. &; Sali, E. (2002) Visual features of intermediate complexity and their use in classification. Nature Neuroscience 5, 682–687.

    PubMed  Google Scholar 

  • Ungerleider, L. G. &; Mishkin, M. (1982) Two cortical visual systems. In Analysis of Visual Behavior (edited by Ingle, D. J.) pp. 549–586. Cambridge: MIT Press.

    Google Scholar 

  • van Essen, D. C. &; Zeki, S. M. (1978) The topographic organization of rhesus monkey prestriate cortex. Journal of Physiology 277, 193–226.

    PubMed  Google Scholar 

  • Vogels, R. &; Orban, G. A. (1996) Coding of stimulus invariances by inferior temporal neurons. Progress in Brain Research 112, 195–211.

    PubMed  Google Scholar 

  • Wang, G., Tanaka, K. &; Tanifuji, M. (1996) Optical imaging of functional organization in the monkey inferotemporal cortex. Science 272, 1665–1668.

    PubMed  Google Scholar 

  • Wang, Q. X., Tanigawa, H. &; Fujita, I. (1998) Postnatal development of horizontal axons in the inferior temporal and primary visual cortices in the monkey. Society for Neuroscience Abstracts 24, 900.

    Google Scholar 

  • Wang, Y., Fujita, I. &; Murayama, Y. (2000) Neuronal mechanisms of selectivity for object features revealed by blocking inhibition in inferotemporal cortex. Nature Neuroscience 3, 807–813.

    PubMed  Google Scholar 

  • Wang, Y., Fujita, I., Tamura, H. &; Murayama, Y. (2002) Contributions of GABAergic inhibition to receptive field structures of monkey inferior temporal neurons. Cerebral Cortex 12, 62–74.

    PubMed  Google Scholar 

  • Wang, Y., Fujita, I. &; Murayama, Y. (2003) Coding of visual patterns and textures in monkey inferior temporal cortex. NeuroReport 14, 453–458.

    PubMed  Google Scholar 

  • Watanabe, M., Tanaka, H., Uka, T. &; Fujita, I. (2002) Disparity-selective neurons in area V4 of macaque monkeys. Journal of Neurophysiology 87, 1960–1973.

    PubMed  Google Scholar 

  • Weller, R. E. &; Kaas, J. H. (1987) Subdivisions and connections of inferior temporal cortex in owl monkeys. Journal of Comparative Neurology 256, 137–172.

    PubMed  Google Scholar 

  • Weller, R. E. &; Steele, G. E. (1992) Cortical connections of subdivisions of inferior temporal cortex in squirrel monkeys. Journal of Comparative Neurology 324, 37–66.

    PubMed  Google Scholar 

  • Xiao, D. K., Edwards, R., Keysers, C., Foldiack, P. &; Perret, D. T. (2000) Searching for effective visual stimuli for cells in the temporal lobe. Society for Neuroscience Abstracts 26, 953.

    Google Scholar 

  • Xu, L., Tanigawa, H. &; Fujita, I. (2003) Distribution of γ-amino-3-hydroxy-5-methyl-4-isoxazolepropionatetype glutamate receptor subunits (GluR2/3) along the ventral visual pathway in the monkey. Journal of Comparative Neurology 456, 396–407.

    PubMed  Google Scholar 

  • Yoshioka, T., Levitt, J. B. &; Lund, J. S. (1992) Intrinsic lattice connections of macaque monkey visual cortical area V4. Journal of Neuroscience 12, 2785–2802.

    PubMed  Google Scholar 

  • Yoshiyama, K., Uka, T., Tanaka., H. &; Fujita, I. (2000) Distribution of disparity-selective neurons in monkey inferior temporal cortex. Neuroscience Research Supplement 23, S73.

    Google Scholar 

  • Young, M. P. (1993) Modules for pattern recognition. Current Biology 3, 44–46.

    PubMed  Google Scholar 

  • Young, M. P. &; Yamane, S. (1992) Sparse population coding of faces in the inferotemporal cortex. Science 256, 1327–1331.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujita, I. The inferior temporal cortex: Architecture, computation, and representation. J Neurocytol 31, 359–371 (2002). https://doi.org/10.1023/A:1024138413082

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024138413082

Keywords

Navigation