Skip to main content
Log in

Signaling through sphingolipid microdomains of the plasma membrane: The concept of signaling platform

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Transmembrane signaling requires modular interactions between signaling proteins, phosphorylation or dephosphorylation of the interacting protein partners [1] and temporary elaboration of supramolecular structures [2], to convey the molecular information from the cell surface to the nucleus. Such signaling complexes at the plasma membrane are instrumental in translating the extracellular cues into intracellular signals for gene activation. In the most straightforward case, ligand binding promotes homodimerization of the transmembrane receptor which facilitates modular interactions between the receptor's cytoplasmic domains and intracellular signaling and adaptor proteins [3]. For example, most growth factor receptors contain a cytoplasmic protein tyrosine kinase (PTK) domain and ligand-mediated receptor dimerization leads to cross phosphorylation of tyrosines in the receptor's cytoplasmic domains, an event that initiates the signaling cascade [4]. In other signaling pathways where the receptors have no intrinsic kinase activity, intracellular non-receptor PTKs (i.e. Src family PTKs, JAKs) are recruited to the cytoplasmic domain of the engaged receptor. Execution of these initial phosphorylations and their translation into efficient cellular stimulation requires concomitant activation of diverse signaling pathways. Availability of stable, preassembled matrices at the plasma membrane would facilitate scaffolding of a large array of receptors, coreceptors, tyrosine kinases and other signaling and adapter proteins, as it is the case in signaling via the T cell antigen receptor [5]. The concept of the signaling platform [6] has gained usage to characterize the membrane structure where many different membrane-bound components need to be assembled in a coordinated manner to carry out signaling.

The structural basis of the signaling platform lies in preferential assembly of certain classes of lipids into distinct physical and functional compartments within the plasma membrane [7,8]. These membrane microdomains or rafts (Figure 1) serve as privileged sites where receptors and proximal signaling molecules optimally interact [9]. In this review, we shall discuss first how signaling platforms are assembled and how receptors and their signaling machinery could be functionally linked in such structures. The second part of our review will deal with selected examples of raft-based signaling pathways in T lymphocytes and NK cells to illustrate the ways in which rafts may facilitate signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pawson T, Nature 373, 573–80 (1995).

    Google Scholar 

  2. Bray D, Annu Rev Biophys Biomol Struct 27, 59–75 (1998).

    Google Scholar 

  3. Pawson T, Scott JD, Science 278, 2075–80 (1998).

    Google Scholar 

  4. Weiss A, Schlessinger J, Cell 94, 277–80 (1998).

    Google Scholar 

  5. Ilangumaran S, He H-T, Hoessli DC, Immunol Today 21, 2–7 (2000).

    Google Scholar 

  6. Arni S, Ilangumaran S, van Echten-Deckert G, Sandhoff K, Poincelet M, Briol A, Rungger-Brandle E, Hoessli DC, Biochem Biophys Res Commun 225, 801–7 (1996).

    Google Scholar 

  7. Brown DA, London E, J Membrane Biol 164, 103–14 (1998).

    Google Scholar 

  8. Brown RE, J Cell Science 111, 1–9 (1998).

    Google Scholar 

  9. Simons K, Ikonen E, Nature 387, 569–72 (1997).

    Google Scholar 

  10. Singer SJ, Nicolson GL, Science 175, 720–31 (1972).

    Google Scholar 

  11. Jacobson KE, Sheets D, Simson R, Science 268, 1441–2 (1995).

    Google Scholar 

  12. Simson R, Yang B, Moore SE, Doherty P, Walsh FS, Jacobson KA, Biophys J 74, 297–308 (1998).

    Google Scholar 

  13. Jacobson K, Dietrich C, Trends Cell Biol 9, 87–91 (1999).

    Google Scholar 

  14. Hoessli DC, Rungger-Brandle E, Exp Cell Res 156, 239–50 (1985).

    Google Scholar 

  15. Cinek T, Horejsi V, J Immunol 149, 2262–70 (1992).

    Google Scholar 

  16. Brown DA, Trends Cell Biol 2, 338–43 (1992).

    Google Scholar 

  17. Varma R, Mayor S, Nature 394, 798–801 (1998).

    Google Scholar 

  18. Friedrichson T, Kurzchalia TV, Nature 394, 802–5 (1998).

    Google Scholar 

  19. Schroeder R, London E, Brown DA, Proc Natl Acad Sci USA 91, 12130–4 (1994).

    Google Scholar 

  20. Sheets ED, Lee GM, Simson R, Jacobson K, Biochemistry 36, 12449–58 (1997).

    Google Scholar 

  21. Schütz GJ, Kada G, Pastushenko VP, Schindler H, EMBO J 19, 892–901 (2000).

    Google Scholar 

  22. Korlach J, Schwille P, Webb WW, Feigenson GW, Proc Natl Acad Sci 96, 8461–6 (1999).

    Google Scholar 

  23. Schroeder RJ, Ahmed SN, Zhu Y, London E, Brown DA, J Biol Chem 273, 1150–7 (1998).

    Google Scholar 

  24. Ilangumaran S, Briol A, Hoessli D, Biochim Biophys Acta 1328, 227–236 (1997).

    Google Scholar 

  25. Ostermeyer AG, Beckrich BT, Ivarson KA, Grove KE, Brown DA, J Biol Chem 274, 34459–66 (1999).

    Google Scholar 

  26. Brown DA, London E, Annu Rev Cell Dev Biol 14, 111–36 (1998).

    Google Scholar 

  27. Hakomori S-I, Handa K, Iwabuchi K, Yamamura S, Prinetti A, Glycobiology 8, xi–xix (1998).

    Google Scholar 

  28. Ilangumaran S, Hoessli DC, Biochem J 335, 433–40 (1998).

    Google Scholar 

  29. Keller P, Simons K, J Cell Biol 140, 1357–67 (1998).

    Google Scholar 

  30. Okamoto T, Schlegel A, Scherer PE, Lisanti MP, J Biol Chem 273, 5419–22 (1998).

    Google Scholar 

  31. Anderson RGW, Ann Rev Biochem 67, 199–225 (1998).

    Google Scholar 

  32. Robinson PJ, Immunol Today 12, 35–41 (1991).

    Google Scholar 

  33. Horejsi V, Draber P, Stockinger H, In GPI-anchored membrane proteins and carbohydrates, edited by Hoessli DC and Ilangumaran S, (R.G Landes Company Austin, TX, 1999), p. 71–91.

    Google Scholar 

  34. Ip NY, Nye SH, Boulton TG, Davis S, Taga T, Li Y, Birren SJ, Yasukawa K, Kishimoto T, Anderson DJ, Cell 69, 1121–32 (1992).

    Google Scholar 

  35. Klein RD, Sherman D, Ho W-H, Stone D, Bennett GL, Moffat B, Vandlen R, Simmons L, Gu Q, Hongo J-A, Devaux B, Poulsen K, Armandini M, Nozak C, Asai N, Goddard A, Phillips H, Henderson CE, Takahashi M, Rosenthal A, Nature 387, 717–21 (1997).

    Google Scholar 

  36. Treanor JJS, Goodman L, Desauvage F, Stone DM, Poulsen KT, Beck CD, Gray C, Armanini MP, Pollock RA, Hefti F, Phillips HS, Goddard A, Moore MW, Buj-Bello A, Davies AM, Asai N, Takahashi M, Vandlen R, Henderson CE, Rosenthal A, Nature 382, 80–3 (1996).

    Google Scholar 

  37. Stefanova I, Horejsi V, Ansotegui IJ, Knapp W, Stockinger H, Science 254, 1016–8 (1991).

    Google Scholar 

  38. Brown DA, Curr Opin Immunol 5, 349–54 (1993).

    Google Scholar 

  39. Casey PJ, Science 268, 221–5 (1995).

    Google Scholar 

  40. Shenoy-Scaria AM, Gauen LKT, Kwong J, Shaw AS, Lublin DM, Mol Cell Biol 13, 6385–92 (1993).

    Google Scholar 

  41. Rodgers W, Crise B, Rose JK, Mol Cell Biol 14, 5384–91 (1994).

    Google Scholar 

  42. Harder T, Scheiffele P, Verkade P, Simons K, J Cell Biology 141, 929–42 (1998).

    Google Scholar 

  43. Harder T, Simons K, Eur J Immunol 29, 556–62 (1999).

    Google Scholar 

  44. Harder T, Simons K, Current Op Cell Biol 9, 534–42 (1997).

    Google Scholar 

  45. Stulnig TM, Berger M, Sigmund T, Raederstorff D, Stockinger H, Waldhausl W, J Cell Biol 143, 637–44 (1998).

    Google Scholar 

  46. Webb Y, Hermida-Matsumoto L, Resh MD, J Biol Chem 275, 261–70 (2000).

    Google Scholar 

  47. Weiss A, Cell 73, 209–12 (1993).

    Google Scholar 

  48. Gunter KC, Germain RN, Kroczek RA, Saito T, Yokoyama WM, Chan C, Weiss A, Shevach EM, Nature 326, 505–7 (1987).

    Google Scholar 

  49. Sussman JJ, Saito T, Shevach EM, Germain RN, Ashwell JD, J Immunol 140, 2520–6 (1988).

    Google Scholar 

  50. Tosello A-C, Mary F, Amiot M, Bernard A, Mary D, J Inflammation 48, 13–27 (1998).

    Google Scholar 

  51. Yeh ETH, Reiser H, Bamezai A, Rock KL, Cell 52, 665–74 (1988).

    Google Scholar 

  52. Romagnoli P, Bron C, J Immunol 158, 5757–64 (1997).

    Google Scholar 

  53. Marmor MD, Bachmann MF, Ohashi PS, Malek TR, Julius M, Int Immunol 11, 1381–93 (1999).

    Google Scholar 

  54. Moran M, Miceli MC, Immunity 9, 787–96 (1998).

    Google Scholar 

  55. Kabouridis PS, Magee AI, Ley SC, EMBO J 16, 4983–98 (1997).

    Google Scholar 

  56. Montixi C, Langlet C, Bernard AM, Thimonier J, Dubois C, Wurbel M-A, Chauvin J-P, Pierres M, He H-T, EMBO J 17, 5334–48 (1998).

    Google Scholar 

  57. van't Hof W, Resh MD, J Cell Biol 145, 377–89 (1999).

    Google Scholar 

  58. Xavier R, Brennan T, Li Q, McCormack C, Seed B, Immunity 8, 723–32 (1998).

    Google Scholar 

  59. Zhang W, Trible RP, Samelson LE, Immunity 8, 239–46 (1998).

    Google Scholar 

  60. Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A, Nature 395, 82–6 (1998).

    Google Scholar 

  61. Shaw AS, Dustin ML, Immunity 6, 361–9 (1997).

    Google Scholar 

  62. Sperling AI, Sedy JR, Manjunath N, Kupfer A, Ardman B, Burkhardt JK, J Immunol 161, 6459–62 (1998).

    Google Scholar 

  63. Viola A, Schroeder S, Sakakibara Y, Lanzavecchia A, Science 283, 680–2 (1999).

    Google Scholar 

  64. Holdorf AD, Green JM, Levin SD, Denny MF, Strous DB, Link V, Changelian PS, Allen PM, Shaw AS, J Exp Med 190, 375–84 (1999).

    Google Scholar 

  65. Lou Z, Jevremovic D, Billadeau DD, Leibson PJ, J Exp Med 191, 347–54 (2000).

    Google Scholar 

  66. Ilangumaran S, Arni S, van Echten-Deckert G, Borisch B, Hoessli DC, Mol Biol Cell 10, 891–905 (1999).

    Google Scholar 

  67. Newton A, Ann Rev Biophys Biomol Struct 22, 1–25 (1993).

    Google Scholar 

  68. Cooper JA, Howell BW, Cell 73, 1051–54 (1993).

    Google Scholar 

  69. Moarefi I, Lafevre-Bernt M, Sicheri F, Huse M, Lee CH, Kuriyan J, Miller WT, Nature 385, 650–3 (1997).

    Google Scholar 

  70. Holowka D, Baird B, Ann Rev Biophys Biomol Struct 25, 79–112 (1996).

    Google Scholar 

  71. Ardouin L, Boyer C, Gillet A, Trucy J, Bernard AM, Nunes J, Delon J, Trautmann A, He HT, Malissen B, Malissen M, Immunity 10, 409–20 (1999).

    Google Scholar 

  72. Ilangumaran S, Briol A, Hoessli DC, Blood 91, 3901–8 (1998).

    Google Scholar 

  73. Oliferenko S, Paiha KTH, Gerke V, Schwärzler C, Schwarz H, Beug H, Günthert U, Huber LA, J Cell Biol 146, 843–54 (1999).

    Google Scholar 

  74. Cheong KH, Zachetti D, Schneeberger EE, Simons K, PNAS 96, 6241–8 (1999).

    Google Scholar 

  75. Puertollano R, Alonso MA, Mol Biol Cell 10, 3435–47 (1999).

    Google Scholar 

  76. Millan J, Alonso MA, Eur J Immunol 28, 3675–84 (1998).

    Google Scholar 

  77. Deans JP, Robbins SM, Polyak MJ, Savage JA, J Biol Chem 273, 344–8 (1998).

    Google Scholar 

  78. Clausse B, Fizazi K, Walczak V, Tetaud C, Wiels J, Tursz T, Busson P, Virology 228, 285–93 (1997).

    Google Scholar 

  79. Puertollano R, Menendez M, Alonso MA, Biochem Biophys Res Commun 266, 330–3 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoessli, D.C., Ilangumaran, S., Soltermann, A. et al. Signaling through sphingolipid microdomains of the plasma membrane: The concept of signaling platform. Glycoconj J 17, 191–197 (2000). https://doi.org/10.1023/A:1026585006064

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026585006064

Navigation