Skip to main content
Log in

Electromagnetic Inverse Solutions in Anatomically Constrained Spherical Head Models

Brain Topography Aims and scope Submit manuscript

Abstract

Two classes of functional neuroimaging methods exist: hemodynamic techniques such as PET and fMRI, and electromagnetic techniques such as EEG/ERP and MEG. In order to fusion these images with anatomical information, co-registration with volumetric MRI is needed. While such co-registration techniques are well established for hemodynamic images, additional steps are needed for electromagnetic recordings, because the activity is only recorded on the scalp surface and inverse solutions based on specific head models have to be used to estimate the 3-dimensional current distribution. To date most of the experimental and clinical studies use multi-shell concentric sphere models of the head, solve the inverse problem on this simplistic model, and then co-register the solution with the MRI using homogeneous transform operations. Contrary to this standard method, we here propose to map the MRI to the spherical system by defining transformation operations that transform the MRI to a best-fitting sphere. Once done so, the solution points are defined in the cerebral tissue of this deformed MRI and the lead field for the distributed linear inverse solutions is calculated for this solution space. The method, that we call SMAC (Spherical Model with Anatomical Constrains) is tested with simulations, as well as with the following real data: 1) estimation of the sources of visual evoked potentials to unilateral stimulation from data averaged over subjects, and 2) localization of interictal discharges of two epileptic patients, one with a temporal, the other with an occipital focus, both confirmed by seizure freedom after resection of the epileptogenic region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Ary, J.P., Klein S.A. and Fender, D.H. Location of sources of evoked scalp potentials: Corrections for skull and scalp thicknesses. IEEE Trans. Biomed. Eng., 1981, 28: 834-836.

    Google Scholar 

  • Awada, K.A., Jackson, D.R., Williams, J.T., Wilton, D.R., Baumann, S.B. and Papanicolaou, A.C. Computational aspects of finite element modeling in EEG source localization. IEEE Trans. Biomed. Eng. 1997, 44: 736-752.

    Google Scholar 

  • Barnard, A.C., Duck, I.M, Lynn M.S. and Timlake, W.P. The application of electromagnetic theory to electrocardiology. II. Numerical solution of the integral equations. Biophys J., 1967, 7: 463-491.

    Google Scholar 

  • Baumgartner, C., Pataraia, E., Lindinger, G. and Deecke, L. Neuromagnetic recordings in temporal lobe epilepsy. J. Clin. Neurophysiol. 2000, 17: 177-189.

    Google Scholar 

  • Bertrand, O., Thévenet, M. and Perrin, F. 3D finite element method in brain electrical activity studies. In: J. Nenonen, H.M. Rajala, et T. Katila (Eds.), Biomagnetic Localization and 3D modeling. Helsinki University of Technology, Report TKK-F-A689, 1991: 154-171.

  • Cuffin, B.N. Effects of head shape on EEG's and MEG's. IEEE Trans. Biomed. Eng., 1990, 37: 44-52.

    Google Scholar 

  • Ebersole, J.S. Defining epileptogenic foci: past, present, future. J. Clin. Neurophysiol., 1997,14: 470-483.

    Google Scholar 

  • Ebersole, J.S. EEG source modeling. The last word. J Clin. Neurophysiol. 1999, 16: 297-302.

    Google Scholar 

  • Fender, D.H. Models of the human brain and the surrounding medis: their influence on the reliability of source localization. J. Clin. Neurophysiol., 1991, 8: 381-390.

    Google Scholar 

  • Fuchs, M., Drenckhahn, R., Wischmann, H.A. and Wagner, M. An improved boundary element model for realistic volume conductor modeling. IEEE Trans. Biomed. Eng., 1998, 45: 980-997.

    Google Scholar 

  • Fuchs M., Wagner M., Köhler T. and Wischmann H.-A. Linear and non-linear current density reconstructions. J. Clin. Neurophysiol., 1999,16: 267-295.

    Google Scholar 

  • Ganslandt, O., Fahlbusch, R., Nimsky, C., Kober, H., Moller, M., Steinmeier, R., Romstock, J. and Vieth, J. Functional neuronavigation with magnetoencephalography: outcome in 50 patients with lesions around the motor cortex. J. Neurosurg. 1999, 91: 73-79.

    Google Scholar 

  • George, J.S., Aine, C.J., Mosher, C., Schmidt, D.M., Ranken, D.M., Schlitt, H.A., Wood, C.C., Lewine, J.D., Sanders, J.A. and Belliveau, J.W. Mapping function in the human brain with magnetoencephalography, anatomical magnetic resonance imaging, and functional magnetic resonance imaging. J. Clin. Neurophysiol., 1995,12: 406-431.

    Google Scholar 

  • Gonzalez Andino, S.L., Grave de Peralta Menendez, R., Biscay Lirio, R., Jimenez Sobrino, J.C., Pascual Marqui, R.D., Lemagne, J. and Valdes Sosa, P.A. Projective methods for the magnetic direct problem. In: S.J. Williamson, M. Hoke, G. Stroink, and M. Kotani (Eds.) Advances in Biomagnetism, New York, Plenum, 1989: 615-618.

    Google Scholar 

  • Grave de Peralta Menendez, R. and Gonzalez Andino, S.L. A critical analysis of linear inverse solutions. IEEE Trans. Biomed. Eng., 1998a, 4: 440-448.

    Google Scholar 

  • Grave de Peralta Menendez, R. and Gonzalez Andino, S.L. Distributed source models: Standard solutions and new developments. In: C. Uhl (Ed.) Analysis of Neurophysiological Brain Functioning. Heidelberg, Springer Verlag 1998b: 176-201.

    Google Scholar 

  • Grave de Peralta Menendez, R. Gonzalez Andino, S., Hauk, O., Spinelli, L., and Michel, C.M. A linear inverse solution with optimal resolution properties: WROP. Biomedizinische Technik, 1997, 42: 53-56.

    Google Scholar 

  • Hämäläinen, M. and Sarvas, J. Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans. Biomed. Eng. 1989, 36: 165-171.

    Google Scholar 

  • Hämäläinen, M.S. and Ilmoniemi, R.J. Interpreting magnetic fields of the brain: minimum norm estimates. Medical and Biological Engineering and Computing, 1994, 32: 35-42.

    Google Scholar 

  • Hari, R. and Forss, N. Magnetoencephalography in the study of human somatosensory cortical processing. Philosophical Transactions of the Royal Society. Biological Sciences, 1999, 354: 1145-1154.

    Google Scholar 

  • Herrendorf, G., Steinhoff, B.J., Kolle, R., Baudewig, J., Waberski, T.D., Buchner, H. and Paulus, W. Dipole-source analysis in a realistic head model in patients with focal epilepsy. Epilepsia. 2000, 41: 71-80.

    Google Scholar 

  • Knowlton, R.C., Wong, S.T.C., Woods, R.P. and Mazziotta, J.C. Coregistration. In: J. Engel Jr. and T.A. Pedley (Eds.), Epilepsy: A Comprehensive Textbook, Philadelphia: Lippincott-Raven Publishers, 1997: 1081-1099.

    Google Scholar 

  • Meijs, J.W.S., Bosch, F.G.C, Peters, M.J. and Lopes da Silva, F.H. On the magnetic field distribution generated by a dipolar current source situated in a realistically shaped compartment of the head. Electroenceph. Clin. Neurophysiol., 1987, 66: 286-298.

    Google Scholar 

  • Menninghaus, E, Lütkenhöner, B. and Gonzalez Andino, S.L. Localization of a dipolar source in a skull phantom: realistic versus spherical model. IEEE Trans. Biomed. Eng., 1994, 41: 986-989.

    Google Scholar 

  • Michel, C.M., Grave de Peralta, R., Lantz, G., Gonzalez Andino S., Spinelli L., Blanke O., Landis T. and Seeck M. Spatio-temporal EEG analysis and distributed source estimation in presurgical epilepsy evaluation. J. Clin. Neurophysiol., 1999, 16: 239-266.

    Google Scholar 

  • Miller, C.E. and Henriquez, C.S. Finite Element Analysis of bioelectric phenomena. Critical Reviews in Biomed. Eng. 1990, 18: 181-205.

    Google Scholar 

  • Morand S., Thut G., Grave de Peralta R., Clarke S., Khateb A., Landis T. and Michel C.M. Electrophysiological evidence for fast visual processing through the human koniocellular pathway when stimuli move. Cerebral Cortex, 2000, 10: 817-825.

    Google Scholar 

  • Mosher, J.C., Leahy, R.M. and Lewis P.S. EEG and MEG: forward solutions for inverse methods. IEEE Trans. Biomed. Eng., 1999a, 46: 245-259.

    Google Scholar 

  • Mosher, J.C., Baillet, S. and Leahy, R.M. EEG source localization and imaging using multiple signal classification approaches. J. Clin. Neurophysiol., 1999b, 16: 225-238.

    Google Scholar 

  • Pasqual-Marqui, R.D., Michel, C.M. and Lehmann, D. Low resolution electromagnetic tomography: a new method to localize electrical activity in the brain. Int. J. Psychophys., 1994: 18: 49-65.

    Google Scholar 

  • Perrin, F., Pernier, J., Bertrand, O., Giard, M.H. and Echallier, J.F. Mapping of scalp potentials by surface spline interpolation. Electroenceph. Clin. Neurophysiol., 1987, 66: 75-81.

    Google Scholar 

  • Perrin, F., Pernier, J., Bertrand, O. and Echalier, J.F. Spherical spline for scalp potential and current density mapping. Electroenceph. Clin. Neurophysiol., 1989, 72: 184-187.

    Google Scholar 

  • Peters, M.J. and De Munck, J.C. On the forward and inverse problem for EEG and MEG. In: F. Grandori, M. Hoke, and G.L. Romani (Eds.), Auditory Evoked Magnetic Field and Electrical Potentials, Advances in Audiology, Vol.6, Basel, Karger, 1990: 70-102.

    Google Scholar 

  • Roth, B.J., Ko, D., von Albertini-Carletti, I.R., Scaffidi, D. and Sato, S. Dipole localization in patients with epilepsy using the realistically shaped head model. Electroenceph. Clin. Neurophysiol. 1997, 102: 159-166.

    Google Scholar 

  • Scherg, M., Bast, T. and Berg, P. Multiple source analysis of intrictal spikes: goals, requirements, and clinical value. J. Clin. Neurophysiol., 1999,16: 214-224.

    Google Scholar 

  • Simpson, G.V., Pflieger, M.E., Foxe, J.J., Ahlfors, S.P., Vaughan, H.G., Jr., Hrabe, J., Ilmoniemi, R.J. and Lantos, G. Dynamic Neuroimaging of brain function. J. Clin. Neurophysiol., 1995, 12: 432-449.

    Google Scholar 

  • Stefan, H., Hummel, C., Hopfengartner, R., Pauli, E., Tilz, C., Ganslandt, O., Kober, H., Moler, A. and Buchfelder, M. Magnetoencephalography in extratemporal epilepsy. J. Clin. Neurophysiol. 2000 Mar, 17: 190-200.

    Google Scholar 

  • Towle, V.L., Bolanos, J., Suarez, D., Tan, K., Greszczuck, R., Levin, D.N., Cakmur, R., Frank, S.A. and Spire J.-P. The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy. Electroenceph. Clin. Neurophysiol., 1993, 87: 154-173.

    Google Scholar 

  • Wheless, J.W., Willmore, L.J., Breier, J.I., Kataki, M., Smith, J.R., King, D.W., Meador, K.J., Park, Y.D., Loring, D.W., Clifton, G.L., Baumgartner, J., Thomas, A.B., Constantinou, J.E. and Papanicolaou, A.C. A comparison of magnetoencephalography, MRI, and V-EEG in patients evaluated for epilepsy surgery. Epilepsia, 1999, 40: 931-941.

    Google Scholar 

  • Wieringa, H.J. MEG, EEG and the integration with magnetic resonance images. Doctoral dissertation. 1993, University of Twente, Netherlands.

    Google Scholar 

  • Worrell, G.A., Lagerlund, T.D., Sharbrough, F.W., Brinkmann, B.H., Busacker, N.E., Cicora, K.M. and O'Brien, T.J. Localization of the epileptic focus by low-resolution electromagnetic tomography in patients with a lesion demonstrated by MRI. Brain Topogr. 2000, 12: 273-282.

    Google Scholar 

  • Yan, Y., Nunez, P.L. and Hart, R.T. Finite-element model of the human head: scalp potentials due to dipole sources. Med. Biol. Eng. Comp., 1991, 29: 475-481.

    Google Scholar 

  • Yvert, B., Bertrand, O., Echallier, J.F. and Pernier, J. Improved dipole localization using local mesh refinement of realistic head geometries: an EEG simulation study. Electroenceph. Clin. Neurophysiol., 1996, 99: 79-89.

    Google Scholar 

  • Yvert, B., Bertrand, O., Echallier, J. and Pernier, J., Improved forward EEG calculations using local mesh refinement of realistic head geometries. Electroenceph. Clin. Neurophysiol. 1995, 95: 381-392.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spinelli, L., Andino, S.G., Lantz, G. et al. Electromagnetic Inverse Solutions in Anatomically Constrained Spherical Head Models. Brain Topogr 13, 115–125 (2000). https://doi.org/10.1023/A:1026607118642

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026607118642

Navigation