Skip to main content
Log in

Increased expression of H11 kinase stimulates glycogen synthesis in the heart

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Objective. H11 kinase is a serine/threonine kinase preferentially expressed in the heart, which participates in cardiac cell growth and also in cytoprotection during ischemia. A cardiac-specific transgenic mouse overexpressing H11 kinase (2- to 7-fold protein increase) has been generated, and is characterized by cardiac hypertrophy with preserved function and protection against irreversible damage during ischemia/reperfusion. In this study, we tested whether H11 kinase also participates in the metabolic adaptation to cardiac hypertrophy and ischemia. Methods and Results. A yeast two-hybrid screen using H11 kinase as a bait in a human heart library revealed a potential interaction with phosphoglucomutase (PGM), the enzyme converting glucose 6-phosphate into glucose 1-phosphate. Interaction between H11 kinase and PGM was confirmed by co-immunoprecipitation. To test the biochemical relevance of this interaction, PGM activity was measured in the heart from wild type and transgenic mice, showing a 20% increase of V max in the transgenic group, without change in K M. Glycogen content was increased proportionately to the expression of the transgene, reaching a 40% increase in high-expression transgenic mice (7-fold increase in H11 kinase protein) versus wild type (p < 0.01). Increased incorporation of glucose into glycogen was coupled to a 3-fold increase in the protein expression of the glucose transporter GLUT1 in plasma membrane of transgenic mice (p < 0.01). Conclusion. H11 kinase promotes the synthesis of glycogen, an essential fuel for the stressed heart in both conditions of overload and ischemia. Therefore, H11 kinase represents an integrative sensor in the cardiac adaptation to stress by coordinating cell growth, survival and metabolism. (Mol Cell Biochem 265: 71–78, 2004)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kappe G, Verschuure P, Philipsen R, Staalduinen A, Van den Bogaart P, Boelens W, De Jong W: Characterization of two novel human small heat shock proteins: Protein kinase-related HspB8 and testis-specific HspB9. Biochim Biophys Acta 1520:1–6, 2001

    Google Scholar 

  2. Depre C, Hase M, Gaussin V, Zajac A, Wang L, Hittinger L, Ghaleh B, Yu X, Kudej RK, Wagner T, Sadoshima J, Vatner SF: H11 kinase is a novel mediator of myocardial hypertrophy in vivo. Circ Res 91: 1007–1014, 2002

    Google Scholar 

  3. Smith C, Yu Y, Kulka M, Aurelian L: A novel human gene similar to the protein kinase (PK) coding domain of the large subunit of Her-pes Simplex virus type 2 ribonucleotide reductase (ICP10) codes for a serine-threonine PK and is expressed in melanoma cells. J Biol Chem 275: 25690–25699, 2000

    Google Scholar 

  4. Aurelian L, Smith C, Winchurch R, Kulka M, Gyotoku T, Zaccaro L, Chrest F, Burnett J: Anovel gene expressed in human keratinocytes with long-term in vitro growth potential is required for cell growth. J Invest Dermatol 116: 286–295, 2001

    Google Scholar 

  5. Charpentier A, Bednarek A, Daniel R, Hawkins K, Leflin K, Gaddis S, MacLeod M, Aldaz C: Effects of estrogen on global gene expression: Identification of novel targets of estrogen action. Cancer Res 60: 5977–5893, 2000

    Google Scholar 

  6. Depre C, Tomlinson JE, Kudej RK, Gaussin V, Thompson E, Kim SJ, Vatner DE, Topper JN, Vatner SF: Gene program for cardiac cell survival induced by transient ischemia in conscious pig. Proc Natl Acad Sci USA 98: 9336–9341, 2001

    Google Scholar 

  7. Depre C, Vanoverschelde J, Taegtmeyer H: Glucose for the heart. Cir-culation 99: 578–588, 1999

    Google Scholar 

  8. Depre C, Shipley G, Chen W, Han Q, Doenst T, Moore M, Stepkowski S, Davies P, Taegtmeyer H: Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy. Nat Med 4: 1269–1275, 1998

    Google Scholar 

  9. Depre C, Rider M, Hue L: Mechanisms of control of heart glycolysis. Eur J Biochem 258: 277–290, 1998

    Google Scholar 

  10. Depre C, Hue L: Inhibition of glyocogenolysis by a glucose analogue in the working rat heart. J Mol Cell Cardiol 29: 2253–2259, 1997

    Google Scholar 

  11. Sambandam N, Lopaschuk G, Brownsey R, Allard M: Energy metabolism in the hypertrophied heart. Heart Fail Rev 7: 161–173, 2002

    Google Scholar 

  12. Chandler MP, Huang H, McElfresh TA, Stanley WC: Increased nonox-idative glycolysis despite continued fatty acid uptake during demand-induced myocardial ischemia. Am J Physiol Heart Circ Physiol 282: H1871–H1878, 2002

    Google Scholar 

  13. Tian R, Abel ED: Responses of GLUT4-deficient hearts to ischemia underscore the importance of glycolysis. Circulation 103: 2961–2966, 2001

    Google Scholar 

  14. Schonekess BO, Allard MF, Henning SL, Wambolt RB, Lopaschuk GD: Contribution of glycogen and exogenous glucose to glucose metabolism during ischemia in the hypertrophied rat heart. Circ Res 81: 540–549, 1997

    Google Scholar 

  15. Taegtmeyer H: Energy metabolism of the heart: From basic concepts to clinical applications. Curr Prob Cardiol 19: 57–116, 1994

    Google Scholar 

  16. McFalls EO, Murad B, Liow J-S, Gannon MC, Haspel HC, Lange A, Marx D, Sikora J, Ward HB: Glucose uptake and glycogen levels are increased in pig heart after repetitive ischemia. Am J Physiol Heart Circ Physiol 282: H205–H211, 2002

    Google Scholar 

  17. Taegtmeyer H, Goodwin GW, Doenst T, Frazier OH: Substrate metabolism as a determinant for postischemic functional recovery of the heart. Am J Cardiol 80: 3A–10A, 1997

    Google Scholar 

  18. Xu KY, Zweier JL, Becker LC: Functional coupling between glycolysis and sarcoplasmic reticulum Ca 2 +transport. Circ Res 77: 88–97, 1995

    Google Scholar 

  19. Nakamura K, Kusuoka H, Ambrosio G, Becker L: Glycolysis is neces-sary to preserve myocardial Ca homeostasis during β-adrenergic stim-ulation. Am J Physiol 264: H670–H678, 1993

    Google Scholar 

  20. Krause S, Jacobus W, Becker L: Alterations in cardiac sarcoplasmic reticulum calcium transport in the postischemic "stunned" myocardium.Circ Res 65: 526–530, 1989

    Google Scholar 

  21. Jeremy RW, Ambrosio G, Pike MM, Jacobus WE, Becker LW: The functional recovery of post-ischemic myocardium requires gly-colysis during early reperfusion. J Mol Cell Cardiol 25: 261–276, 1993

    Google Scholar 

  22. Jeremy RW, Koretsune Y, Marban E, Becker LC: Relation between glycolysis and calcium homeostasis in postischemic myocardium. Circ Res 70: 1180–1190, 1992

    Google Scholar 

  23. Giniger E, Varnum SM, Ptashne M: Specific DNA binding GAL4, a positive regulatory protein in yeast. Cell 40: 767–774, 1985

    Google Scholar 

  24. Aho S, Arffman A, Pummi T, Uitto J: A novel reporter gene MEL1 for the yeast two-hybrid system. Anal Biochem 253: 270–272, 1997

    Google Scholar 

  25. Chien C, Bartel P, Sternglanz R, Fields S: The two-hybrid system: A method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci USA 88: 9578–9582, 1991

    Google Scholar 

  26. Hill J, Donald K, Griffiths D: DMSO-enhanced whole cell yeast trans-formation. Nucleic Acids Res 19: 5791, 1991

    Google Scholar 

  27. Gietz D, St Jean A, Woods R, Schiestl R: Improved method for high-efficiency transformation of intact yeast cells. Nucleic Acids Res 20: 1425, 1992

    Google Scholar 

  28. Li B, Fields S: Identification of mutations in p53 that affect its binding to SV40 T antigen by using the yeast two-hybrid system. FASEB J 7: 957–963, 1993

    Google Scholar 

  29. Bendixen C, Gangloff S, Rothstein R: A yeast mating-selection scheme for detection of protein-protein interactions. Nucleic Acids Res 22: 1778–1779, 1994

    Google Scholar 

  30. Carreras M, Bassols A, Carreras J, Climent F: Effect of vanadate on the glucose-1,6-bisphosphate synthase and glucose-1,6-bisphosphatase activities of phosphoglucomutase. Arch Biochem Biophys 264: 155–164, 1988

    Google Scholar 

  31. Percival M, Doherty K, Gresser M: Inhibition of phosphoglucomutase by vanadate. Biochemistry 29: 2764–2769, 1990

    Google Scholar 

  32. Lee Y, Marks A, Gureckas N, Lacro R, Nadal-Ginard B, Kim D: Purifi-cation, characterization, and molecular cloning of a 60-kDa phospho-protein in rabbit skeletal sarcoplasmic reticulum which is an isoform of phosphoglucomutase. J Biol Chem 267: 21080–21088, 1992

    Google Scholar 

  33. Depre C, Rider MH, Veitch K, Hue L: Role of fructose 2, 6-bisphosphate in the control of heart glycolysis. J Biol Chem 268: 13274–13279, 1993

    Google Scholar 

  34. Hue L, Bontemps F, Hers G: The effect of glucose and of potassium ions on the interconversion of the two forms of glycogen phosphorylase and of glycogen synthetase in isolated rat liver preparations. Biochem J 152: 105–114, 1975

    Google Scholar 

  35. Russell RR, Nguyêeñn VTB, Mrus JM, Taegtmeyer H: Fasting and lactate unmask insulin responsiveness in the isolated working rat heart. Am J Physiol 263: E556–E561, 1992

    Google Scholar 

  36. Schneider CA, Nguyêeñn VTB, Taegtmeyer H: Feeding and fasting de-termine postischemic glucose utilization in isolated working rat hearts. Am J Physiol 260: H542–H548, 1991

    Google Scholar 

  37. Schneider CA, Taegtmeyer H: Fasting in vivo delays myocardial cell damage after brief periods of ischemia in the isolated working rat heart. Circ Res 68: 1045–1050, 1991

    Google Scholar 

  38. Smith C, Nelson J, Aurelian L, Gober M, Gosami B: Ras-GAP binding and phosphorylation by Herpes Simplex virus type 2 RR1 PK (ICP10) and activation of the Ras/MEK/MAPK mitogenic pathway are required for timely onset of virus growth. J Virol 74: 10417–10429, 2000

    Google Scholar 

  39. Benndorf R, Sun X, Gilmont R, Biederman K, Molloy M, Goodmurphy C, Cheng H, Andrews P, Welsh M: HSP22, a new member of the small heat shock protein superfamily, interacts with mimic of phosphorylated HSP27 ( 3D HSP27). J Biol Chem 276: 26753–26761, 2001

    Google Scholar 

  40. Verrelli BC, Eanes WF: The functional impact of pgm amino acid poly-morphism on glycogen content in Drosophila melanogaster. Genetics 159: 201–210, 2001

    Google Scholar 

  41. Entman M, Bornet E, Barber A, Schwartz A, Levey G, Lehotay D, Bricker L: The cardiac sarcoplasmic reticulum-glycogenolytic complex. A possible effector site for cyclic AMP. Biochim Biophys Acta 499: 228–237, 1977

    Google Scholar 

  42. Entman M, Keslensky S, Chu A, Van Winkle W: The sarcoplasmic reticulum-glycogenolytic complex in mammalian fast twitch skele-tal muscle. Proposed in vitro counterpart of the contraction-activated glycogenolytic pool. J. Biol. Chem. 255: 6245–6252, 1980

    Google Scholar 

  43. Aiello DP, Fu L, Miseta A, Bedwell DM: Intracellular glucose 1-phosphate and glucose 6-phosphate levels modulate Ca 2 +homeosta-sis in Saccharomyces cerevisiae.JBiol Chem 277: 45751–45758, 2002

    Google Scholar 

  44. Fu L, Miseta A, Hunton D, Marchase RB, Bedwell DM: Loss of the major isoform of phosphoglucomutase results in altered calcium home-ostasis in Saccharomyces cerevisiae.J.Biol. Chem. 275: 5431–5440, 2000

    Google Scholar 

  45. Chen P, Csutora P, Veyna-Burke N, Marchase R: Glucose-6-phosphate and Ca 2 +sequestration are mutually enhanced in microsomes from liver, brain, and heart. Diabetes 47: 874–881, 1998

    Google Scholar 

  46. Montero-Lomeli M, Morais BLB, Figueiredo DL, Neto DCS, Martins JRP, Masuda CA: The initiation factor eIF4A is involved in the response to lithium stress in Saccharomyces cerevisiae.JBiol Chem 277: 21542–21548, 2002

    Google Scholar 

  47. Bro C, Regenberg B, Lagniel G, Labarre J, Montero-Lomeli M, Nielsen J: Transcriptional, proteomic and metabolic response to lithium in galactose-grown yeast cells. J Biol Chem: 32141–32149, 2003

  48. Goodwin GW, Arteaga JA, Taegtmeyer H: Glycogen turnover in the isolated working rat heart. J Biol Chem 270: 9234–9240, 1995

    Google Scholar 

  49. Goodwin G, Ahmad F, Taegtmeyer H: Preferential oxidation of glycogen in isolated working rat heart. J Clin Invest 97: 1409–1416, 1996

    Google Scholar 

  50. Goodwin G, Taylor C, Taegtmeyer H: Regulation of energy metabolism of the heart during acute increase in heart work. J Biol Chem 273: 29530–29539, 1998

    Google Scholar 

  51. Henning SL, Wambolt RB, Schönekess BO, Lopaschuk GD, Allard MF: Contribution of glycogen to aerobic myocardial glucose utilization. Circulation 93: 1549–1555, 1996

    Google Scholar 

  52. Neely JR, Grotyohann LW: Role of glycolytic products in damage to myocardium: Dissociation of adenosine triphosphate levels and recov-ery of function of reperfused canine myocardium. Circ Res 55: 816–824, 1984

    Google Scholar 

  53. McElroy DD, Walker WE, Taegtmeyer H: Glycogen loading improves left ventricular function of the rabbit heart after hypothermic ischemic arrest. J Appl Cardiol 4: 455–465, 1989

    Google Scholar 

  54. Apstein CS, Gravino FN, Haudenschild CC: Determinants of a protec-tive effect of glucose and insulin on the ischemic myocardium. Ef-fects on contractile function, diastolic compliance, metabolism, and ultrastructure during ischemia and reperfusion. Circ Res 52: 515–526, 1983

    Google Scholar 

  55. Scheuer J, Stezoski SW: Protective role of increased myocardial glyco-gen stores in cardiac anoxia in the rat. Circ Res 27: 835–849, 1970

    Google Scholar 

  56. Lagerstrom CF, Walker WE, Taegtmeyer H: Failure of glycogen de-pletion to improve left ventricular function of the rabbit heart after hy-pothermic ischemic arrest. Circ Res 63: 81–86, 1988

    Google Scholar 

  57. Depre C, Vanoverschelde J-L, Goudemant J-F, Mottet I, Hue L: Protec-tion against ischemic injury by nonvasoactive concentrations of nitric oxide synthase inhibitors in the perfused rabbit heart. Circulation 92: 1911–1918, 1995

    Google Scholar 

  58. Runnman EM, Lamp ST, Weiss JN: Enhanced utilization of exogenous glucose improves cardiac function in hypoxic rabbit ventricle without increasing total glycolytic flux. J Clin Invest 86: 1222–1233, 1990

    Google Scholar 

  59. Liu B, Clanachan AS, Schulz R, Lopaschuk GD: Cardiac efficiency is improved after ischemia by altering both the source and fate of protons. Circ Res 79: 940–948, 1996

    Google Scholar 

  60. Lopaschuk G, Warmbolt R, Barr R: An imbalance between glycolysis and glucose oxidation is a possible explanation for the detrimental ef-fects of high levels of fatty acids during aerobic reperfusion of ischemic hearts. J Pharmacol Exp Ther 264: 135–144, 1993

    Google Scholar 

  61. Depre C, Taegtmeyer H: Metabolic aspects of programmed cell survival and cell death in the heart. Cardiovasc Res 45: 538–548, 2000

    Google Scholar 

  62. Murry CE, Jennings RB, Reimer KA: Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 74: 1124–1136, 1986

    Google Scholar 

  63. Reimer KA, Murry CE, Yamasawa I, Hill ML, Jennings RB: Four brief periods of myocardial ischemia cause no cumulative ATP loss or necro-sis.Am J Physiol 251: H1306–H1315, 1986

    Google Scholar 

  64. Weiss R, De Albuquerque C, Vandergaer K, Chacko V, Gerstenblith G: Attenuated glycogenolysis reduces glycolytic catabolic accumulation during ischemia in precondioned rat hearts. Circ Res 79: 435–446, 1996

    Google Scholar 

  65. Wolfe CL, Sievers RE, Visseren FLJ, Donnelly TJ: Loss of myocar-dial protection after preconditioning correlates with the time course of glycogen recovery within the preconditioned segment. Circulation 87: 881–892, 1993

    Google Scholar 

  66. Finegan BA, Lopaschuk GD, Gandhi M, Clanachan AS: Ischemic pre-conditioning inhibits glycolysis and proton production in isolated work-ing rat hearts. Am J Physiol 269: H1767–H1775, 1995

    Google Scholar 

  67. Borgers M, Thoné F, Wouters L, Ausma J, Shivalkar B, Flameng W: Structural correlates of regional myocardial dysfunction in patients with critical coronary artery stenosis. Cardiovasc Pathol 2: 237–245, 1993

    Google Scholar 

  68. Vanoverschelde JL, Wijns W, Borgers M, Heyndrickx G, Depre C, Fla-meng W, Melin JA: Chronic myocardial hibernation in humans. From bedside to bench. Circulation 95: 1961–1971, 1997

    Google Scholar 

  69. Depre C, Vanoverschelde JL, Melin JA, B orgers M, Bol A, Ausma J, Dion R, Wijns W: Structural and metabolic correlates of the reversibility of chronic left ventricular ischemic dysfunction in humans. AmJ Physiol 268: H1265–H1275, 1995

    Google Scholar 

  70. Depre C, Kim SJ, John AS, Huang YH, RiMoldi OE, Pepper JR, Dreyus GD, Gaussin V, Pennell DJ, Vatner DE, Camici PG, Vatner SF: Pro-gram of cell survival underlying human and experimental hibernating myocardium. Circ Res 2004, in press

  71. Wambolt R, Henning S, English D, Dyachkova Y, Lopaschuk G, Allard M: Glucose utilization and glycogen turnover are accelerated in hyper-trophied rat hearts during severe low-flow ischemia. J Mol Cell Cardiol 31: 493–502, 1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Zajac, A., Hedhli, N. et al. Increased expression of H11 kinase stimulates glycogen synthesis in the heart. Mol Cell Biochem 265, 71–78 (2004). https://doi.org/10.1023/B:MCBI.0000044311.58653.54

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000044311.58653.54

Navigation