Skip to main content
Log in

Lysosomal Storage Diseases: Is Impaired Apoptosis a Pathogenic Mechanism?

  • Commentary
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Lysosomal storage disorders are inborn diseases resulting from the lack or deficient activity of lysosomal hydrolases, transporters, or integral membrane proteins. Although most of the genes encoding these proteins have been characterized and many gene defects identified, the molecular bases underlying the pathophysiology of these genetic diseases still remain obscure. In this mini-review, the potential role of apoptotic cell death in the development of the cellular and tissue lesions seen in lysosomal storage disorders, and particularly in neurological diseases, is discussed. A list of observations documenting either a decrease or an exacerbation in apoptosis induction are presented. The putative, yet controversial contribution of certain sphingolipids and cathepsins in the regulation of these phenomena is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

references

  1. Winchester, B., Vellodi, A., and Young, E. 2000. The molecular basis of lysosomal storage diseases and their treatment. Biochem. Soc. Trans. 28:150–154.

    Google Scholar 

  2. Desnick, R. J. and Schuchman, E. H. 2002. Enzyme replacement and enhancement therapies: lessons from lysosomal disorders. Nat. Rev. Genet. 3:954–966.

    Google Scholar 

  3. Jeyakumar, M., Butters, T. D., Dwek, R. A., and Platt, F. M. 2002. Glycosphingolipid lysosomal storage diseases: therapy and pathogenesis. Neuropathol. Appl. Neurobiol. 28:343–357.

    Google Scholar 

  4. Wraith, J. E. 2002. Lysosomal disorders. Semin. Neonatol. 7:75–83.

    Google Scholar 

  5. Drake, F. H., Dodds, R. A., James, I. E., Connor, J. R., Debouck, C., Richardson, S., Lee-Rykaczewski, E., Coleman, L., Rieman, D., Barthlow, R., Hastings, G., and Gowen, M. 1996. Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J. Biol. Chem. 271:12511–12516.

    Google Scholar 

  6. Gelb, B. D., Shi, G. P., Chapman, H. A., and Desnick, R. J. 1996. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273:1236–1238.

    Google Scholar 

  7. Conzelmann, E. and Sandhoff, K. 1991. Biochemical basis of late-onset neurolipidoses. Dev. Neurosci. 13:197–204.

    Google Scholar 

  8. Graber, D., Salvayre, R., and Levade, T. 1994. Accurate differentiation of neuronopathic and nonneuronopathic forms of Niemann-Pick disease by evaluation of the effective residual lysosomal sphingomyelinase activity in intact cells. J. Neurochem. 63:1060–1068.

    Google Scholar 

  9. Hengartner, M. O. 2000. The biochemistry of apoptosis. Nature 407:770–776.

    Google Scholar 

  10. Wyllie, A. H. 1980. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555–556.

    Google Scholar 

  11. Rao, L., Perez, D., and White, E. 1996. Lamin proteolysis facilitates nuclear events during apoptosis. J. Cell Biol. 135:1441–1455.

    Google Scholar 

  12. Bursch, W. 2001. The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ. 8:569–581.

    Google Scholar 

  13. Ferri, K. F. and Kroemer, G. 2001. Organelle-specific initiation of cell death pathways. Nat. Cell Biol. 3:E255–263.

    Google Scholar 

  14. de Duve, C. 1983. Lysosomes revisited. Eur. J. Biochem. 137:391–397.

    Google Scholar 

  15. Johnson, D. E. 2000. Noncaspase proteases in apoptosis. Leukemia 14:1695–1703.

    Google Scholar 

  16. Czaja, M. J. 2001. TNF toxicity—death from caspase or cathepsin, that is the question. Hepatology 34:844–846.

    Google Scholar 

  17. Leist, M. and Jaattela, M. 2001. Triggering of apoptosis by cathepsins. Cell Death Differ. 8:324–326.

    Google Scholar 

  18. Salvesen, G. S. 2001. A lysosomal protease enters the death scene. J. Clin. Invest. 107:21–22.

    Google Scholar 

  19. Deiss, L. P., Galinka, H., Berissi, H., Cohen, O., and Kimchi, A. 1996. Cathepsin D protease mediates programmed cell death induced by interferon-gamma, Fas/APO-1 and TNF-alpha. EMBO J. 15:3861–3870.

    Google Scholar 

  20. Roberg, K., Johansson, U., and Ollinger, K. 1999. Lysosomal release of cathepsin D precedes relocation of cytochrome c and loss of mitochondrial transmembrane potential during apoptosis induced by oxidative stress. Free Radic. Biol. Med. 27:1228–1237.

    Google Scholar 

  21. Roberts, L. R., Adjei, P. N., and Gores, G. J. 1999. Cathepsins as effector proteases in hepatocyte apoptosis. Cell Biochem. Biophys. 30:71–88.

    Google Scholar 

  22. Kagedal, K., Johansson, U., and Ollinger, K. 2001. The lysosomal protease cathepsin D mediates apoptosis induced by oxidative stress. FASEB J. 15:1592–1594.

    Google Scholar 

  23. Zang, Y., Beard, R. L., Chandraratna, R. A., and Kang, J. X. 2001. Evidence of a lysosomal pathway for apoptosis induced by the synthetic retinoid CD437 in human leukemia HL-60 cells. Cell Death Differ. 8:477–485.

    Google Scholar 

  24. Demoz, M., Castino, R., Cesaro, P., Baccino, F. M., Bonelli, G., and Isidoro, C. 2002. Endosomal-lysosomal proteolysis mediates death signaling by TNFalpha, not by etoposide, in L929 fibrosarcoma cells: evidence for an active role of cathepsin D. Biol. Chem. 383:1237–1248.

    Google Scholar 

  25. Takuma, K., Kiriu, M., Mori, K., Lee, E., Enomoto, R., Baba, A., and Matsuda, T. 2003. Roles of cathepsins in reperfusion-induced apoptosis in cultured astrocytes. Neurochem. Int. 42:153–159.

    Google Scholar 

  26. Shibata, M., Kanamori, S., Isahara, K., Ohsawa, Y., Konishi, A., Kametaka, S., Watanabe, T., Ebisu, S., Ishido, K., Kominami, E., and Uchiyama, Y. 1998. Participation of cathepsins B and D in apoptosis of PC12 cells following serum deprivation. Biochem. Biophys. Res. Commun. 251:199–203.

    Google Scholar 

  27. Roberg, K., Kagedal, K., and Ollinger, K. 2002. Microinjection of cathepsin D induces caspase-dependent apoptosis in fibroblasts. Am. J. Pathol. 161:89–96.

    Google Scholar 

  28. Wu, G. S., Saftig, P., Peters, C., and El-Deiry, W. S. 1998. Potential role for cathepsin D in p53-dependent tumor suppression and chemosensitivity. Oncogene 16:2177–2183.

    Google Scholar 

  29. Neuzil, J., Zhao, M., Ostermann, G., Sticha, M., Gellert, N., Weber, C., Eaton, J. W., and Brunk, U. T. 2002. Alpha-tocopheryl succinate, an agent with in vivo anti-tumor activity, induces apoptosis by causing lysosomal instability. Biochem. J. 362:709–715.

    Google Scholar 

  30. Reiners, J. J., Jr., Caruso, J. A., Mathieu, P., Chelladurai, B., Yin, X. M., and Kessel, D. 2002. Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves Bid cleavage. Cell Death Differ. 9:934–944.

    Google Scholar 

  31. Isahara, K., Ohsawa, Y., Kanamori, S., Shibata, M., Waguri, S., Sato, N., Gotow, T., Watanabe, T., Momoi, T., Urase, K., Kominami, E., and Uchiyama, Y. 1999. Regulation of a novel pathway for cell death by lysosomal aspartic and cysteine proteinases. Neuroscience 91:233–249.

    Google Scholar 

  32. Castino, R., Pace, D., Demoz, M., Gargiulo, M., Ariatta, C., Raiteri, E., and Isidoro, C. 2002. Lysosomal proteases as potential targets for the induction of apoptotic cell death in human neuroblastomas. Int. J. Cancer 97:775–779.

    Google Scholar 

  33. Tardy, C., Tyynela, J., Hasilik, A., Levade, T., and Andrieu-Abadie, N. 2003. Stress-induced apoptosis is impaired in cells with a lysosomal targeting defect but is not affected in cells synthesizing a catalytically inactive cathepsin D. Cell Death Differ. (in press).

  34. Guicciardi, M. E., Deussing, J., Miyoshi, H., Bronk, S. F., Svingen, P. A., Peters, C., Kaufmann, S. H., and Gores, G. J. 2000. Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J. Clin. Invest. 106:1127–1137.

    Google Scholar 

  35. Guicciardi, M. E., Miyoshi, H., Bronk, S. F., and Gores, G. J. 2001. Cathepsin B knockout mice are resistant to tumor necrosis factor-alpha-mediated hepatocyte apoptosis and liver injury: implications for therapeutic applications. Am. J. Pathol. 159:2045–2054.

    Google Scholar 

  36. Foghsgaard, L., Wissing, D., Mauch, D., Lademann, U., Bastholm, L., Boes, M., Elling, F., Leist, M., and Jaattela, M. 2001. Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J. Cell Biol. 153:999–1010.

    Google Scholar 

  37. Faubion, W. A., Guicciardi, M. E., Miyoshi, H., Bronk, S. F., Roberts, P. J., Svingen, P. A., Kaufmann, S. H., and Gores, G. J. 1999. Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. J. Clin. Invest. 103:137–145.

    Google Scholar 

  38. Levicar, N., Dewey, R. A., Daley, E., Bates, T. E., Davies, D., Kos, J., Pilkington, G. J., and Lah, T. T. 2003. Selective suppression of cathepsin L by antisense cDNA impairs human brain tumor cell invasion in vitro and promotes apoptosis. Cancer Gene Ther. 10:141–151.

    Google Scholar 

  39. Felbor, U., Kessler, B., Mothes, W., Goebel, H. H., Ploegh, H. L., Bronson, R. T., and Olsen, B. R. 2002. Neuronal loss and brain atrophy in mice lacking cathepsins B and L. Proc. Natl. Acad. Sci. USA 99:7883–7888.

    Google Scholar 

  40. Cho, S. and Dawson, G. 2000. Palmitoyl protein thioesterase 1 protects against apoptosis mediated by Ras-Akt-caspase pathway in neuroblastoma cells. J. Neurochem. 74:1478–1488.

    Google Scholar 

  41. Cho, S., Dawson, P. E., and Dawson, G. 2000. Antisense palmitoyl protein thioesterase 1 (PPT1) treatment inhibits PPT1 activity and increases cell death in LA-N-5 neuroblastoma cells. J. Neurosci. Res. 62:234–240.

    Google Scholar 

  42. Riboni, L., Viani, P., Bassi, R., Prinetti, A., and Tettamanti, G. 1997. The role of sphingolipids in the process of signal transduction. Prog. Lipid Res. 36:153–195.

    Google Scholar 

  43. Kolesnick, R. N. and Krönke, M. 1998. Regulation of ceramide production and apoptosis. Annu. Rev. Physiol. 60:643–665.

    Google Scholar 

  44. Hannun, Y. A. and Luberto, C. 2000. Ceramide in the eukaryotic stress response. Trends Cell Biol. 10:73–80.

    Google Scholar 

  45. Obeid, L. M., Linardic, C. M., Karolak, L. A., and Hannun, Y. A. 1993. Programmed cell death induced by ceramide. Science 259:1769–1771.

    Google Scholar 

  46. Hannun, Y. 1996. Functions of ceramide in coordinating cellular responses to stress. Science 274:1855–1859.

    Google Scholar 

  47. Kolesnick, R. and Hannun, Y. A. 1999. Ceramide and apoptosis. Trends Biochem. Sci. 24:224–225.

    Google Scholar 

  48. Levade, T., Augé, N., Veldman, R. J., Cuvillier, O., Nègre-Salvayre, A., and Salvayre, R. 2001. Sphingolipid mediators in cardiovascular cell biology and pathology. Circ. Res. 89:957–968.

    Google Scholar 

  49. Dbaibo, G. S., Perry, D. K., Gamard, C. J., Platt, R., Poirier, G. G., Obeid, L. M., and Hannun, Y. A. 1997. Cytokine response modifier A (CrmA) inhibits ceramide formation in response to tumor necrosis factor (TNF)-a: CrmA and Bcl-2 target distinct components in the apoptotic pathway. J. Exp. Med. 185:481–490.

    Google Scholar 

  50. Levade, T. and Jaffrézou, J. P. 1999. Signaling sphingomyelinases: which, where, how and why? Biochim. Biophys. Acta 1438:1–17.

    Google Scholar 

  51. Igisu, H. and Suzuki, K. 1984. Progressive accumulation of toxic metabolite in a genetic leukodystrophy. Science 224:753–755.

    Google Scholar 

  52. Neuenhofer, S., Conzelmann, E., Schwarzmann, G., Egge, H., and Sandhoff, K. 1986. Occurrence of lysoganglioside lyso-GM2 (ll3-Neu5Ac-gangliotriaosylsphingosine) in GM2 gangliosidosis brain. Biol. Chem. Hoppe Seyler 367:241–244.

    Google Scholar 

  53. Rosengren, B., Fredman, P., Mansson, J. E., and Svennerholm, L. 1989. Lysosulfatide (galactosylsphingosine-3-O-sulfate) from metachromatic leukodystrophy and normal human brain. J. Neurochem. 52:1035–1041.

    Google Scholar 

  54. Toda, K., Kobayashi, T., Goto, I., Ohno, K., Eto, Y., Inui, K., and Okada, S. 1990. Lysosulfatide (sulfogalactosylsphingosine) accumulation in tissues from patients with metachromatic leukodystrophy. J. Neurochem. 55:1585–1591.

    Google Scholar 

  55. Rodriguez-Lafrasse, C. and Vanier, M. T. 1999. Sphingosylphosphorylcholine in Niemann-Pick disease brain: accumulation in type A but not in type B. Neurochem. Res. 24:199–205.

    Google Scholar 

  56. Hannun, Y. A. and Bell, R. M. 1987. Lysosphingolipids inhibit protein kinase C: implications fot the sphingolipidoses. Science 235:670–674.

    Google Scholar 

  57. Schissel, S. L., Schuchman, E. H., Williams, K. J., and Tabas, I. 1996. Zn2+stimulated sphingomyelinase is secreted by many cell types and is a product of the acid sphingomyelinase gene. J. Biol. Chem. 271:18431–18436.

    Google Scholar 

  58. Hiraiwa, M., Taylor, E. M., Campana, W. M., Darin, S. J., and O'Brien, J. S. 1997. Cell death prevention, mitogen-activated protein kinase stimulation, and increased sulfatide concentrations in Schwann cells and oligodendrocytes by prosaposin and prosaptides. Proc. Natl. Acad. Sci. USA 94:4778–4781.

    Google Scholar 

  59. Campana, W. M., Eskeland, N., Calcutt, N. A., Misasi, R., Myers, R. R., and O'Brien, J. S. 1998. Prosaptide prevents paclitaxel neurotoxicity. Neurotoxicology 19:237–244.

    Google Scholar 

  60. Tsuboi, K., Hiraiwa, M., and O'Brien, J. S. 1998. Prosaposin prevents programmed cell death of rat cerebellar granule neurons in culture. Brain Res. Dev. Brain. Res. 110:249–255.

    Google Scholar 

  61. Pham, C. T. and Ley, T. J. 1999. Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc. Natl. Acad. Sci. USA 96:8627–8632.

    Google Scholar 

  62. Shannon, P., Pennacchio, L. A., Houseweart, M. K., Minassian, B. A., and Myers, R. M. 2002. Neuropathological changes in a mouse model of progressive myoclonus epilepsy: cystatin B deficiency and Unverricht-Lundborg disease. J. Neuropathol. Exp. Neurol. 61:1085–1091.

    Google Scholar 

  63. Huang, J. Q., Trasler, J. M., Igdoura, S., Michaud, J., Hanal, N., and Gravel, R. A. 1997. Apoptotic cell death in mouse models of GM2 gangliosidosis and observations on human Tay-Sachs and Sandhoff diseases. Hum. Mol. Genet. 6:1879–1885.

    Google Scholar 

  64. Wada, R., Tifft, C. J., and Proia, R. L. 2000. Microglial activation precedes acute neurodegeneration in Sandhoff disease and is suppressed by bone marrow transplantation. Proc. Natl. Acad. Sci. USA 97:10954–10959.

    Google Scholar 

  65. Taniike, M., Mohri, I., Eguchi, N., Irikura, D., Urade, Y., Okada, S., and Suzuki, K. 1999. An apoptotic depletion of oligodendrocytes in the twitcher, a murine model of globoid cell leukodystrophy. J. Neuropathol. Exp. Neurol. 58:644–653.

    Google Scholar 

  66. Jatana, M., Giri, S., and Singh, A. K. 2002. Apoptotic positive cells in Krabbe brain and induction of apoptosis in rat C6 glial cells by psychosine. Neurosci. Lett. 330:183–187.

    Google Scholar 

  67. Tohyama, J., Oya, Y., Ezoe, T., Vanier, M. T., Nakayasu, H., Fujita, N., and Suzuki, K. 1999. Ceramide accumulation is associated with increased apoptotic cell death in cultured fibroblasts of sphingolipid activator protein-deficient mouse but not in fibroblasts of patients with Farber disease. J. Inherit. Metab. Dis. 22:649–662.

    Google Scholar 

  68. Coenen, R., Gieselmann, V., and Lullmann-Rauch, R. 2001. Morphological alterations in the inner ear of the arylsulfatase A-deficient mouse. Acta Neuropathol. (Berlin) 101:491–498.

    Google Scholar 

  69. Sueyoshi, N., Maehara, T., and Ito, M. 2001. Apoptosis of Neuro2a cells induced by lysosphingolipids with naturally occurring stereochemical configurations. J. Lipid Res. 42:1197–1202.

    Google Scholar 

  70. Tohyama, J., Matsuda, J., and Suzuki, K. 2001. Psychosine is as potent an inducer of cell death as C6-ceramide in cultured fibroblasts and in MOCH-1 cells. Neurochem. Res. 26:667–671.

    Google Scholar 

  71. Goldin, E., Roff, C. F., Miller, S. P., Rodriguez-Lafrasse, C., Vanier, M. T., Brady, R. O., and Pentchev, P. G. 1992. Type C Niemann-Pick disease: a murine model of the lysosomal cholesterol lipidosis accumulates sphingosine and sphinganine in liver. Biochim. Biophys. Acta 1127:303–311.

    Google Scholar 

  72. Wu, Y. P., Kubota, A., and Suzuki, K. 1999. Neuronal death and reactive glial changes in the brain of Niemann-Pick disease type C mouse. Soc. Neurosci. Abstr. 25:1118.

    Google Scholar 

  73. Santana, P., Pena, L. A., Haimovitz-Friedman, A., Martin, S., Green, D., McLoughlin, M., Cordon-Cardo, C., Schuchman, E. H., Fuks, Z., and Kolesnick, R. 1996. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86:189–199.

    Google Scholar 

  74. de Maria, R., Rippo, M. R., Schuchman, E. H., and Testi, R. 1998. Acidic sphingomyelinase (ASM) is necessary for Fas-induced GD3 ganglioside accumulation and efficient apoptosis of lymphoid cells. J. Exp. Med. 187:897–902.

    Google Scholar 

  75. Separovic, D., Pink, J. J., Oleinick, N. A., Kester, M., Boothman, D. A., McLoughlin, M., Pena, L. A., and Haimovitz-Friedman, A. 1999. Niemann-Pick human lymphoblasts are resistant to phthalocyanine 4-photodynamic therapy-induced apoptosis. Biochem. Biophys. Res. Commun. 258:506–512.

    Google Scholar 

  76. Komatsu, M., Takahashi, T., Abe, T., Takahashi, I., Ida, H., and Takada, G. 2001. Evidence for the association of ultraviolet-C and H(2)O(2)-induced apoptosis with acid sphingomyelinase activation. Biochim. Biophys. Acta 1533:47–54.

    Google Scholar 

  77. Lozano, J., Menendez, S., Morales, A., Ehleiter, D., Liao, W. C., Wagman, R., Haimovitz-Friedman, A., Fuks, Z., and Kolesnick, R. 2001. Cell autonomous apoptosis defects in acid sphingomyelinase knockout fibroblasts. J. Biol. Chem. 276:442–448.

    Google Scholar 

  78. Zhang, Y., Mattjus, P., Schmid, P. C., Dong, Z., Zhong, S., Ma, W. Y., Brown, R. E., Bode, A. M., and Schmid, H. H. 2001. Involvement of the acid sphingomyelinase pathway in UVA-induced apoptosis. J. Biol. Chem. 276:11775–11782.

    Google Scholar 

  79. Garcia-Ruiz, C., Colell, A., Mari, M., Morales, A., Calvo, M., Enrich, C., and Fernandez-Checa, J. C. 2003. Defective TNF-alpha-mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice. J. Clin. Invest. 111:197–208.

    Google Scholar 

  80. Farina, F., Cappello, F., Todaro, M., Bucchieri, F., Peri, G., Zummo, G., and Stassi, G. 2000. Involvement of caspase-3 and GD3 ganglioside in ceramide-induced apoptosis in Farber disease. J. Histochem. Cytochem. 48:57–62.

    Google Scholar 

  81. Cock, J. G., Tepper, A. D., de Vries, E., van Blitterswijk, W. J., and Borst, J. 1998. CD95 (Fas/APO-1) induces ceramide formation and apoptosis in the absence of a functional acid sphingomyelinase. J. Biol. Chem. 273:7560–7565.

    Google Scholar 

  82. Ségui, B., Bezombes, C., Uro-Coste, E., Medin, J. A., Andrieu-Abadie, N., Augé, N., Brouchet, A., Laurent, G., Salvayre, R., Jaffrézou, J. P., and Levade, T. 2000. Stress-induced apoptosis is not mediated by endolysosomal ceramide. FASEB J. 14:36–47.

    Google Scholar 

  83. Bezombes, C., Ségui, B., Cuvillier, O., Bruno, A. P., Uro-Coste, E., Gouazé, V., Andrieu-Abadie, N., Carpentier, S., Laurent, G., Salvayre, R., Jaffrézou, J. P., and Levade, T. 2001. Lysosomal sphingomyelinase is not solicited for apoptosis signaling. FASEB J. 15:297–299.

    Google Scholar 

  84. Burek, C., Roth, J., Koch, H. G., Harzer, K., Los, M., and Schulze-Osthoff, K. 2001. The role of ceramide in receptor-and stress-induced apoptosis studied in acidic ceramidase-deficient Farber disease cells. Oncogene 20:6493–6502.

    Google Scholar 

  85. Haltia, M. 2003. The neuronal ceroid-lipofuscinoses. J. Neuropathol. Exp. Neurol. 62:1–13.

    Google Scholar 

  86. Tyynela, J., Sohar, I., Sleat, D. E., Gin, R. M., Donnelly, R. J., Baumann, M., Haltia, M., and Lobel, P. 2000. A mutation in the ovine cathepsin D gene causes a congenital lysosomal storage disease with profound neurodegeneration. EMBO J. 19:2786–2792.

    Google Scholar 

  87. Vesa, J. and Peltonen, L. 2002. Mutated genes in juvenile and variant late infantile neuronal ceroid lipofuscinoses encode lyso-somal proteins. Curr. Mol. Med. 2:439–444.

    Google Scholar 

  88. Lane, S. C., Jolly, R. D., Schmechel, D. E., Alroy, J., and Boustany, R. M. 1996. Apoptosis as the mechanism of neurode-generation in Batten's disease. J. Neurochem. 67:677–683.

    Google Scholar 

  89. Gupta, P., Soyombo, A. A., Atashband, A., Wisniewski, K. E., Shelton, J. M., Richardson, J. A., Hammer, R. E., and Hofmann, S. L. 2001. Disruption of PPT1 or PPT2 causes neuronal ceroid lipofuscinosis in knockout mice. Proc. Natl. Acad. Sci. USA 98:13566–13571.

    Google Scholar 

  90. Nakanishi, H., Zhang, J., Koike, M., Nishioku, T., Okamoto, Y., Kominami, E., von Figura, K., Peters, C., Yamamoto, K., Saftig, P., and Uchiyama, Y. 2001. Involvement of nitric oxide released from microglia-macrophages in pathological changes of cathepsin D-deficient mice. J. Neurosci. 21:7526–7533.

    Google Scholar 

  91. Puranam, K., Qian, W. H., Nikbakht, K., Venable, M., Obeid, L., Hannun, Y., and Boustany, R. M. 1997. Upregulation of Bcl-2 and elevation of ceramide in Batten disease. Neuropediatrics 28:37–41.

    Google Scholar 

  92. Puranam, K. L., Guo, W. X., Qian, W. H., Nikbakht, K., and Boustany, R. M. 1999. CLN3 defines a novel antiapoptotic pathway operative in neurodegeneration and mediated by ceramide. Mol. Genet. Metab. 66:294–308.

    Google Scholar 

  93. Winter, E. and Ponting, C. P. 2002. TRAM, LAG1 and CLN8: members of a novel family of lipid-sensing domains? Trends Biochem. Sci. 27:381–383.

    Google Scholar 

  94. Saftig, P., Hetman, M., Schmahl, W., Weber, K., Heine, L., Mossmann, H., Koster, A., Hess, B., Evers, M., von Figura, K., Peters, C. 1995. Mice deficient for the lysosomal proteinase cathepsin D exhibit progressive atrophy of the intestinal mucosa and profound destruction of lymphoid cells. EMBO J. 14:3599–3608.

    Google Scholar 

  95. Rakoczy, P. E., Zhang, D., Robertson, T., Barnett, N. L., Papadimitriou, J., Constable, I. J., and Lai, C. M. 2002. Progressive age-related changes similar to age-related macular degeneration in a transgenic mouse model. Am. J. Pathol. 161:1515–1524.

    Google Scholar 

  96. Koike, M., Shibata, M., Ohsawa, Y., Nakanishi, H., Koga, T., Kametaka, S., Waguri, S., Momoi, T., Kominami, E., Peters, C., Figura, K., Saftig, P., and Uchiyama, Y. 2003. Involvement of two different cell death pathways in retinal atrophy of cathepsin D-deficient mice. Mol. Cell Neurosci. 22:146–161.

    Google Scholar 

  97. Terman, A., Neuzil, J., Kagedal, K., Ollinger, K., and Brunk, U. T. 2002. Decreased apoptotic response of inclusion-cell disease fibroblasts: a consequence of lysosomal enzyme missorting? Exp. Cell Res. 274:9–15.

    Google Scholar 

  98. Simonaro, C. M., Haskins, M. E., and Schuchman, E. H. 2001. Articular chondrocytes from animals with a dermatan sulfate storage disease undergo a high rate of apoptosis and release nitric oxide and inflammatory cytokines: a possible mechanism underlying degenerative joint disease in the mucopolysaccharidoses. Lab. Invest. 81:1319–1328.

    Google Scholar 

  99. Park, M., Helip-Wooley, A., and Thoene, J. 2002. Lysosomal cystine storage augments apoptosis in cultured human fibroblasts and renal tubular epithelial cells. J. Am. Soc. Nephrol. 13:2878–2887.

    Google Scholar 

  100. Tanaka, Y., Guhde, G., Suter, A., Eskelinen, E. L., Hartmann, D., Lullmann-Rauch, R., Janssen, P. M., Blanz, J., von Figura, K., and Saftig, P. 2000. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406:902–906.

    Google Scholar 

  101. Hersh, B. M., Hartwieg, E., and Horvitz, H. R. 2002. The Caenorhabditis elegans mucolipin-like gene cup-5 is essential for viability and regulates lysosomes in multiple cell types. Proc. Natl. Acad. Sci. USA 99:4355–4360.

    Google Scholar 

  102. Riikonen, R., Vanhanen, S. L., Tyynela, J., Santavuori, P., and Turpeinen, U. 2000. CSF insulin-like growth factor-1 in infantile neuronal ceroid lipofuscinosis. Neurology 54:1828–1832.

    Google Scholar 

  103. Zhang, Z., Butler, J. D., Levin, S. W., Wisniewski, K. E., Brooks, S. S., and Mukherjee, A. B. 2001. Lysosomal ceroid depletion by drugs: therapeutic implications for a hereditary neurodegenerative disease of childhood. Nat. Med. 7:478–484.

    Google Scholar 

  104. Persaud-Sawin, D. A., VanDongen, A., and Boustany, R. M. 2002. Motifs within the CLN3 protein: modulation of cell growth rates and apoptosis. Hum. Mol. Genet. 11:2129–2142.

    Google Scholar 

  105. Seigel, G. M., Lotery, A., Kummer, A., Bernard, D. J., Greene, N. D., Turmaine, M., Derksen, T., Nussbaum, R. L., Davison, B., Wagner, J., and Mitchison, H. M. 2002. Retinal pathology and function in a Cln3 knockout mouse model of juvenile Neuronal Ceroid Lipofuscinosis (Batten disease). Mol. Cell. Neurosci. 19:515–527.

    Google Scholar 

  106. Pennacchio, L. A., Bouley, D. M., Higgins, K. M., Scott, M. P., Noebels, J. L., and Myers, R. M. 1998. Progressive ataxia, myoclonic epilepsy and cerebellar apoptosis in cystatin B-deficient mice. Nat. Genet. 20:251–258.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Levade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tardy, C., Andrieu-Abadie, N., Salvayre, R. et al. Lysosomal Storage Diseases: Is Impaired Apoptosis a Pathogenic Mechanism?. Neurochem Res 29, 871–880 (2004). https://doi.org/10.1023/B:NERE.0000021232.05175.38

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000021232.05175.38

Navigation