Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Continual remodeling of postsynaptic density and its regulation by synaptic activity

Abstract

A postsynaptic density (PSD) protein, PSD-95, was tagged with green fluorescent protein (GFP-PSD-95) and expressed in cultured hippocampal neurons using recombinant adenoviruses. GFP-PSD-95 was selectively localized to excitatory postsynaptic sites. Time-lapse fluorescence imaging of hippocampal neurons revealed that >20% of GFP-PSD-95 clusters turned over within 24 hours. The appearance rate of clusters was higher than the disappearance rate, and this difference accounted for the gradual increase of the cluster density observed in culture. Dynamics of PSD-95 clusters were also inhibited by blockers of excitatory synaptic transmission. Continual PSD turnover and its regulation by synaptic activity may be important in activity-dependent remodeling of neuronal connections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization of GFP-PSD-95 to dendritic spines.
Figure 2: Localization of GFP-PSD-95 to excitatory postsynaptic sites.
Figure 3: Dynamic behavior of GFP-PSD-95 clusters.
Figure 4: Turnover of PSD-95 clusters in hippocampal pyramidal neurons on day 19 of culture.
Figure 5: Statistical analysis of PSD-95 turnover in hippocampal pyramidal neurons.
Figure 6: Increase of PSD-95 immunoreactive clusters in cultured hippocampal neurons.
Figure 7: Electrophysiological analysis of hippocampal pyramidal neurons in culture.
Figure 8: Turnover of PSD-95 clusters is regulated by synaptic activity.

Similar content being viewed by others

References

  1. Burns, M. E. & Augustine, G. J. Synaptic structure and function: dynamic organization yields architectural precision. Cell 83, 187–194 (1995).

    Article  CAS  Google Scholar 

  2. Bolshakov, V. Y., Golan, H., Kandel, E. R. & Siegelbaum, S. A. Recruitment of new sites of synaptic transmission during the cAMP-dependent late phase of LTP at CA3-CA1 synapses in the hippocampus. Neuron 19, 635–651 (1997).

    Article  CAS  Google Scholar 

  3. Buchs, P. A. & Muller, D. Induction of long-term potentiation is associated with major ultrastructural changes of activated synapses. Proc. Natl. Acad. Sci. USA 93, 8040–8045 (1996).

    Article  CAS  Google Scholar 

  4. Geinisman, Y., deToledo-Morrell, L. & Morrell, F. Induction of long-term potentiation is associated with an increase in the number of axospinous synapses with segmented postsynaptic densities. Brain Res. 566, 77–88 (1991).

    Article  CAS  Google Scholar 

  5. Geinisman, Y. et al. Structural synaptic correlate of long-term potentiation: formation of axospinous synapses with multiple, completely partitioned transmission zones. Hippocampus 3, 435–445 (1993).

    Article  CAS  Google Scholar 

  6. Geinisman, Y., Detoledo-Morrell, L., Morrell, F., Persina, I. S. & Beatty, M. A. Synapse restructuring associated with the maintenance phase of hippocampal long-term potentiation. J. Comp. Neurol. 368, 413–423 (1996).

    Article  CAS  Google Scholar 

  7. Hosokawa, T., Rusakov, D. A., Bliss, T. V. & Fine, A. Repeated confocal imaging of individual dendritic spines in the living hippocampal slice: evidence for changes in length and orientation associated with chemically induced LTP. J. Neurosci. 15, 5560–5573 (1995).

    Article  CAS  Google Scholar 

  8. Sorra, K. E. & Harris, K. M. Stability in synapse number and size at 2 hr after long-term potentiation in hippocampal area CA1. J. Neurosci. 18, 658–671 (1998).

    Article  CAS  Google Scholar 

  9. Muller, M., Gahwiler, B. H., Rietschin, L. & Thompson, S. M. Reversible loss of dendritic spines and altered excitability after chronic epilepsy in hippocampal slice cultures. Proc. Natl. Acad. Sci. USA 90, 257–261 (1993).

    Article  CAS  Google Scholar 

  10. Murphy, D. D. & Segal, M. Regulation of dendritic spine density in cultured rat hippocampal neurons by steroid hormones. J. Neurosci. 16, 4059–4068 (1996).

    Article  CAS  Google Scholar 

  11. Gould, E., Woolley, C. S., Frankfurt, M. & McEwen, B. S. Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. J. Neurosci. 10, 1286–1291 (1990).

    Article  CAS  Google Scholar 

  12. Woolley, C. S., Gould, E., Frankfurt, M. & McEwen, B. S. Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J. Neurosci. 10, 4035–4039 (1990).

    Article  CAS  Google Scholar 

  13. Fischer, M., Kaech, S., Knutti, D. & Matus, A. Rapid actin-based plasticity in dendritic spines. Neuron 20, 847–854 (1998).

    Article  CAS  Google Scholar 

  14. Ziv, N. E. & Smith, S. J. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17, 91–102 (1996).

    Article  CAS  Google Scholar 

  15. Maletic-Savatic, M., Malinow, R. & Svoboda, K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927 (1999).

    Article  CAS  Google Scholar 

  16. Engert, F. & Bonhoeffer, T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 66–70 (1999).

    Article  CAS  Google Scholar 

  17. Cho, K. O., Hunt, C. A. & Kennedy, M. B. The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9, 929–942 (1992).

    Article  CAS  Google Scholar 

  18. Kornau, H. C., Schenker, L. T., Kennedy, M. B. & Seeburg, P. H. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269, 1737–1740 (1995).

    Article  CAS  Google Scholar 

  19. Kistner, U. et al. SAP90, a rat presynaptic protein related to the product of the Drosophila tumor suppressor gene dlg-A. J. Biol. Chem. 268, 4580–4583 (1993).

    CAS  PubMed  Google Scholar 

  20. Kim, E., Niethammer, M., Rothschild, A., Jan, Y. N. & Sheng, M. Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases. Nature 378, 85–88 (1995).

    Article  CAS  Google Scholar 

  21. Ziff, E. B. Enlightening the postsynaptic density. Neuron 19, 1163–1174 (1997).

    Article  CAS  Google Scholar 

  22. Kim, E., Cho, K. O., Rothschild, A. & Sheng, M. Heteromultimerization and NMDA receptor-clustering activity of Chapsyn-110, a member of the PSD-95 family of proteins. Neuron 17, 103–113 (1996).

    Article  CAS  Google Scholar 

  23. Rao, A. & Craig, A. M. Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron 19, 801–812 (1997).

    Article  CAS  Google Scholar 

  24. Rao, A., Kim, E., Sheng, M. & Craig, A. M. Heterogeneity in the molecular composition of excitatory postsynaptic sites during development of hippocampal neurons in culture. J. Neurosci. 18, 1217–1229 (1998).

    CAS  PubMed  Google Scholar 

  25. Craven, S. E., El-Husseini, A. E. & Bredt, D. S. Synaptic targeting of the postsynaptic density protein PSD-95 mediated by lipid and protein motifs. Neuron 22, 497–509 (1999).

    Article  CAS  Google Scholar 

  26. Arnold, D. & Clapham, D. E. Molecular determinants for subcellular localization of PSD-95 with an interacting K+ channel. Neuron 23, 149–157 (1999).

    Article  CAS  Google Scholar 

  27. Heim, R., Prasher, D. C. & Tsien, R. Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA 91, 12501–12504 (1994).

    Article  CAS  Google Scholar 

  28. Fukaya, M., Ueda, H., Yamauchi, K., Inoue, Y. & Watanabe, M. Distinct spatiotemporal expression of mRNA for the PSD-95/SAP90 protein family in the mouse brain. Neurosci. Res. 33, 111–118 (1999).

    Article  CAS  Google Scholar 

  29. Migaud, M. et al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature 396, 433–439 (1998).

    Article  CAS  Google Scholar 

  30. Woolley, C. S. & McEwen, B. S. Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J. Neurosci. 12, 2549–2554 (1992).

    Article  CAS  Google Scholar 

  31. Bailey, C. H. & Kandel, E. R. Structural changes accompanying memory storage. Annu. Rev. Physiol. 55, 397–426 (1993).

    Article  CAS  Google Scholar 

  32. Ma, L., Zablow, L., Kandel, E. R. & Siegelbaum, S. A. Cyclic AMP induces functional presynaptic boutons in hippocampal CA3–CA1 neuronal cultures. Nat. Neurosci. 2, 24–30 (1999).

    Article  CAS  Google Scholar 

  33. Nguyen, Q. T. & Lichtman, J. W. Mechanism of synapse disassembly at the developing neuromuscular junction. Curr. Opin. Neurobiol. 6, 104–112 (1996).

    Article  CAS  Google Scholar 

  34. Kanegae, Y. et al. Efficient gene activation in mammalian cells by using recombinant adenovirus expressing site-specific Cre recombinase. Nucleic Acids Res. 23, 3816–3821 (1995).

    Article  CAS  Google Scholar 

  35. Kanegae, Y., Makimura, M. & Saito, I. A simple and efficient method for purification of infectious recombinant adenovirus. Jpn. J. Med. Sci. Biol. 47, 157–166 (1994).

    Article  CAS  Google Scholar 

  36. Miyake, S. et al. Efficient generation of recombinant adenoviruses using adenovirus DNA- terminal protein complex and a cosmid bearing the full-length virus genome. Proc. Natl. Acad. Sci. USA 93, 1320–1324 (1996).

    Article  CAS  Google Scholar 

  37. Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199 (1991).

    Article  CAS  Google Scholar 

  38. Okabe, S., Vicario-Abejon, C., Segal, M. & McKay, R. D. Survival and synaptogenesis of hippocampal neurons without NMDA receptor function in culture. Eur. J. Neurosci. 10, 2192–2198 (1998).

    Article  CAS  Google Scholar 

  39. Okabe, S., Miwa, A. & Okado, H. Alternative splicing of the C-terminal domain regulates cell surface expression of the NMDA receptor NR1 subunit. J. Neurosci. (in press).

  40. Papa, M., Bundman, M. C., Greenberger, V. & Segal, M. Morphological analysis of dendritic spine development in primary cultures of hippocampal neurons. J. Neurosci. 15, 1–11 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Kanegae and I. Saito for materials used in adenovirus construction. This work was supported by grants from the Agency of Industrial Science and Technology and Special Coordination Funds of the Science and Technology Agency of the Japanese Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeo Okabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okabe, S., Kim, HD., Miwa, A. et al. Continual remodeling of postsynaptic density and its regulation by synaptic activity. Nat Neurosci 2, 804–811 (1999). https://doi.org/10.1038/12175

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing