Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Global and fine information coded by single neurons in the temporal visual cortex

Abstract

When we see a person's face, we can easily recognize their species, individual identity and emotional state. How does the brain represent such complex information? A substantial number of neurons in the macaque temporal cortex respond to faces1,2,3,4,5,6,7,8,9,10,11,12. However, the neuronal mechanisms underlying the processing ofcomplex information are not yet clear. Here we recorded the activity of single neurons in the temporal cortex of macaque monkeys while presenting visual stimuli consisting of geometric shapes, and monkey and human faces with various expressions. Information theory was used to investigate how well the neuronal responses could categorize the stimuli. We found that single neurons conveyed two different scales of facial information intheir firing patterns, starting at different latencies. Global information, categorizing stimuli as monkey faces, human faces or shapes, was conveyed in the earliest part of the responses. Fineinformation about identity or expression was conveyed later,beginning on average 51 ms after global information. We speculate that global information could be used as a ‘header’ to prepare destination areas for receiving more detailed information.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Responses of a face-responsive neuron.
Figure 2: Information transmission rate (Ic) of face-responsive neurons.

Similar content being viewed by others

References

  1. Gross, C. G., Rocha-Miranda, C. E. & Bender, D. E. Visual properties of neutrons in inferotemporal cortex of the macaque. J. Neurophysiol. 35, 96–111 (1972).

    Article  CAS  Google Scholar 

  2. Bruce, C., Desimone, R. & Gross, C. G. Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J. Neurophysiol. 46, 369–384 (1981).

    Article  CAS  Google Scholar 

  3. Perrett, D. I. et al. Neurones responsive to faces in the temporal cortex: Studies of functional organization, sensitivity to identity and relation to perception. Hum. Neurobiol. 3, 197–208 (1984).

    CAS  PubMed  Google Scholar 

  4. Baylis, G. C., Rolls, E. T. & Leonard, C. M. Functional subdivisions of the temporal lobe neocortex. J.Neurosci. 7, 330–342 (1987).

    Article  CAS  Google Scholar 

  5. Hasselmo, M. E., Rolls, E. T. & Baylis, G. C. The role of expression and identity in the face-selective responses of neurons in the temporal visual cortex of the monkey. Behav. Brain Res. 32, 203–218 (1989).

    Article  CAS  Google Scholar 

  6. Yamane, S., Kaji, S. & Kawano, K. What facial features activate face neurons in the inferotemporal cortex of the monkey? Exp. Brain Res. 73, 209–14 (1988).

    Article  CAS  Google Scholar 

  7. Young, M. P. & Yamane, S. Sparse population coding of faces in the inferotemporal cortex. Science 256, 1327–1331 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Mikami, A., Nakamura, K. & Kubota, K. Neuronal responses to photographs in the superior temporal sulcus of the rhesus monkey. Behav. Brain Res. 60, 1–13 (1994).

    Article  CAS  Google Scholar 

  9. Nakamura, K., Matsumoto, K., Mikami, A. & Kubota, K. Visual response properties of single neurons in the temporal pole of behaving monkeys. J. Neurophysiol. 71, 1206–1221 (1994).

    Article  CAS  Google Scholar 

  10. Oram, M. W. & Perrett, D. I. Time course of neural responses discriminating different views of the face and head. J. Neurophysiol. 68, 70–84 (1992).

    Article  CAS  Google Scholar 

  11. Oram, M. W. & Perrett, D. I. Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey. J. Neurophysiol. 76, 109–129 (1996).

    Article  CAS  Google Scholar 

  12. Tovee, M. J., Rolls, E. T., Treves, A. & Bellis, R. P. Information encoding and the responses of single neurons in the primate temporal visual cortex. J. Neurophysiol. 70, 640–654 (1993).

    Article  CAS  Google Scholar 

  13. Kitazawa, S., Kimura, T. & Yin, PB. Cerebellar complex spikes encode both destinations and errors in arm movements. Nature 392, 494–497 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Sugase, Y., Yamane, S., Kawano, K. & Ueno, S. Neurons in the macaque temporal cortex convey multiple information about monkey and human faces with expression. Soc. Neurosci. Abs. 24, 899 (1998).

    Google Scholar 

  15. Heller, J., Hertz, J. A., Kjaer, T. W. & Richmond, B. J. Information flow and temporal coding in primate pattern vision. J. Comput. Neurosci. 2, 175–193 (1995).

    Article  CAS  Google Scholar 

  16. Suzuki, W. A. & Amaral, D. G. Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents. J. Comp. Neurol. 350, 497–533 (1994).

    Article  CAS  Google Scholar 

  17. Lavenex, P., Suzuki, W. A. & Amaral, D. G. Projections from the perirhinal and parahippocampal cortices to the neocortex in macaque monkeys (Macaca fascicularis). Soc. Neurosci. Abs. 24, 1905 (1998).

    Google Scholar 

  18. Seltzer, B. & Pandya, D. N. Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res. 149, 1–24 (1978).

    Article  CAS  Google Scholar 

  19. Webster, M. J., Bachevalier, J. & Ungerleider, L. G. Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb. Cortex 4, 470–483 (1994).

    Article  CAS  Google Scholar 

  20. Amaral, D. G. & Price, J. L. Amygdalo-cortical projections in the monkey (Macaca fascicularis). J.Comp. Neurol. 230, 465–496 (1984).

    Article  CAS  Google Scholar 

  21. Nakamura, K., Mikami, A. & Kubota, K. Activity of single neurons in the monkey amygdala during performance of a visual discrimination task. J. Neurophysiol. 67, 1447–1463 (1992).

    Article  CAS  Google Scholar 

  22. Amari, S. Neural theory of association and concept-formation. Biol. Cybern. 26, 175–185 (1977).

    Article  CAS  Google Scholar 

  23. Ellis, H. D. in The Neuropsychology of Face Perception and Facial Expression (ed. Bruyer, B.) 1–27 (Lawrence Erlbaum, London, 1986).

    Google Scholar 

  24. Hecaen, H. in Interhemispheric Relations and Cerebral Dominance (ed. Moutcastle, V. B.) 215–243 (John Hopkins, Baltimore, 1962).

    Google Scholar 

  25. McCarthy, R. A. & Warrington, E. K. Evidence for modality-specific meaning systems in the brain. Nature 334, 428–430 (1988).

    Article  ADS  CAS  Google Scholar 

  26. Damasio, H., Grabowski, T. J., Tranel, D., Hichwa, R. D. & Damasio, A. R. Aneural basis for lexical retrieval. Nature 380, 499–505 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Panzeri, S. & Treves, A. Analytical estimates of limited sampling biases in different information measures. Network 7, 87–107 (1996).

    PubMed  MATH  Google Scholar 

  28. Golomb, D., Hertz, J., Panzeri, S., Treves, A. & Richmond, B. How well can we estimate the information carried in neuronal responses from limited samples? Neural Comput. 9, 649–665 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Kitazawa and B. J. Richmond for information analysis; M. Toshi and B.J. Richmond for critical comments on this manuscript; M. Shidara, K. Matsuda, K. Kansaku, S. Kanazawa, E. Rosenberg and S. Motoyasu for their help; and M. Okui, A. Kameyama and T. Takasu for technical assistance. This work was supported by Agency of Industrial Science and Technology, the Science and Technology Agency, and Japan Society for the promotion of science research fellowships for young scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuko Sugase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugase, Y., Yamane, S., Ueno, S. et al. Global and fine information coded by single neurons in the temporal visual cortex. Nature 400, 869–873 (1999). https://doi.org/10.1038/23703

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23703

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing