Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Type III InsP3 receptor channel stays open in the presence of increased calcium

Abstract

The inositol 1,4,5-trisphosphate receptor (InsP3R) is the main calcium(Ca2+) release channel in most tissues. Three isoforms have been identified1,2,3,4,5,6, but only types I and II InsP3R have been characterized7,8. Here we examine the functional properties of the type III InsP3R because this receptor is restricted to the trigger zone from which Ca2+ waves originate9,10,11 and it has distinctive InsP3-binding properties12,13. We find that type III InsP3R forms Ca2+ channels with single-channel currents that are similar to those of type I InsP3R; however, the open probability of type III InsP3R isoform increases monotonically with increased cytoplasmic Ca2+ concentration, whereas the type I isoform has a bell-shaped dependence on cytoplasmic Ca2+. The properties of type III InsP3R provide positive feedback as Ca2+ is released; the lack of negative feedback allows complete Ca2+ release from intracellular stores. Thus, activation of type III InsP3R in cells that express only this isoform results in a single transient, but global, increase in the concentration of cytosolic Ca2+. The bell-shaped Ca2+-dependence curve of type I InsP3R is ideal for supporting Ca2+ oscillations, whereas the properties of type III InsP3R are better suited to signal initiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RIN-5F cells preferentially express Type III InsP3R.
Figure 2: Type III InsP3R is an InsP3-gated Ca2+ channel.
Figure 3: Single channel open probability for type I and type III InsP3R as a function of Ca2+ concentration.
Figure 4: Ca2+ signalling patterns in RIN-5F cells and rat hepatocytes.
Figure 5: Subcellular Ca2+ release differs between RIN-5F and SKHep1 cells.

Similar content being viewed by others

References

  1. Furuichi, T.et al. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 342, 32–38 (1989).

    Article  ADS  CAS  Google Scholar 

  2. Mignery, G., Sudhof, T. C., Takei, K. & De Camilli, P. Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature 342, 192–195 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Sudhof, T. C., Newton, C. L., Archer, B. T., Ushkaryov, Y. A. & Mignery, G. A. Structure of a novel InsP3receptor. EMBO J. 10, 3199–3206 (1991).

    Article  CAS  Google Scholar 

  4. Blondel, O., Takeda, J., Janssen, H., Seino, S. & Bell, G. I. Sequence and functional characterization of a third inositol trisphospate receptor subtype, IP3R-3, expressed in pancreatic islets, gastrointestinal tract, and other tissues. J. Biol. Chem. 268, 11356–11363 (1993).

    CAS  PubMed  Google Scholar 

  5. Maranto, A. R. Primary structure, ligand binding, and localization of the human type 3 inositol 1,4,5-trisphosphate receptor expressed in intestinal epithelium. J. Biol. Chem. 269, 1222–1230 (1994).

    CAS  PubMed  Google Scholar 

  6. Morgan, J. M., De Smedt, H. & Gillespie, J. I. Identification of three isoforms of the InsP3receptor in human myometrial smooth muscle. Pflugers Arch. 431, 697–705 (1996).

    Article  CAS  Google Scholar 

  7. Bezprozvanny, I. & Ehrlich, B. Inositol (1,4,5)-trisphosphate gated Ca channels from canine cerebellum: divalent cation conduction properties and regulation by intraluminal Ca. J. Gen. Physiol. 104, 821–856 (1994).

    Article  CAS  Google Scholar 

  8. Perez, P. J., Ramos-Franco, J., Fill, M. & Mignery, G. A. Identification and functional reconstitution of the type 2 inositol 1,4,5-trisphosphate receptor from ventricular cardiac myocytes. J. Biol. Chem. 272, 23961–23969 (1997).

    Article  CAS  Google Scholar 

  9. Nathanson, M. H., Fallon, M. B., Padfield, P. J. & Maranto, A. R. Localization of the type 3 inositol 1,4,5-trisphosphate receptor in the Ca2+ wave trigger zone of pancreatic acinar cells. J. Biol. Chem. 269, 4693–4696 (1994).

    CAS  PubMed  Google Scholar 

  10. Thorn, P., Lawrie, A., Smith, P., Gallacher, D. & Petersen, O. H. Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate. Cell 74, 661–668 (1993).

    Article  CAS  Google Scholar 

  11. Kasai, H., Li, Y. & Miyashita, Y. Subcellular distribution of Ca2+ release channels underlying Ca2+ waves and oscillations in exocrine pancrease. Cell 74, 669–677 (1993).

    Article  CAS  Google Scholar 

  12. Yoneshima, H., Miyawaki, A., Takayuki, M., Teiichi, F. & Mikoshiba, K. Ca2+ differentially regulates the ligand-affinity states of the type 1 and type 3 inositol 1,4,5-trisphosphate receptors. Biochem. J. 322, 591–596 (1997).

    Article  CAS  Google Scholar 

  13. Cardy, T. J. A., Traynor, D. & Taylor, C. W. Differential regulation of types-1 and -3 inositol trisphosphate receptors by cytosolic Ca2+. Biochem. J. 328, 785–793 (1997).

    Article  CAS  Google Scholar 

  14. Wojcikiewicz, R. J. H. Type I,II,III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell types. J. Biol. Chem. 270, 11678–11683 (1995).

    Article  CAS  Google Scholar 

  15. DeLisle, S.et al. Expression of inositol 1,4,5-trisphosphate receptors changes the Ca signal in Xenopus oocytes. Am. J. Physiol. 270, C1255–C1261 (1996).

    Article  CAS  Google Scholar 

  16. Bezprozvanny, I., Watras, J. & Ehrlich, B. E. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351, 751–754 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Kaftan, E. J., Ehrlich, B. E. & Watras, J. Inositol 1,4,5-trisphosphate (InsP3) and calcium interact to increase the dynamic range of InsP3receptor-dependent calcium signaling. J. Gen. Physiol. 110, 529–538 (1997).

    Article  CAS  Google Scholar 

  18. Thomas, A. P., Bird, G. S., Hajinoczky, G., Robb-Gaspers, L. D. & Putney, J. W. Spatial and temporal aspects of cellular calcium signaling. FASEB J. 10, 1505–1517 (1996).

    Article  CAS  Google Scholar 

  19. Dubyak, G. R. & El-Moatassim, C. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am. J. Physiol. Cell Physiol. 265, C577–C606 (1993).

    Article  CAS  Google Scholar 

  20. Cao, D., Lin, G., Westphale, E., Beyer, E. & Steinberg, T. Mechanisms for the coordination of intercellular calcium signaling in insulin-secreting cells. J. Cell Sci. 110, 497–504 (1997).

    CAS  PubMed  Google Scholar 

  21. Dixon, C., Woods, N., Cuthbertson, K. & Cobbold, P. Evidence for two Ca2(+)-mobilizing purinoceptors on rat hepatocytes. Biochem. J. 269, 499–502 (1990).

    Article  CAS  Google Scholar 

  22. Bootman, M., Berridge, M. & Lipp, P. Cooking with calcium: the recipes for composing global signals from elementary events. Cell 91, 367–373 (1997).

    Article  CAS  Google Scholar 

  23. Parker, I. & Yao, Y. Ca2+ transients associated with openings of inositol trisphosphate-gated channels in Xenopus oocytes. J. Physiol. 49, 663–668 (1996).

    Article  Google Scholar 

  24. Lipp, P., Thomas, D., Berridge, M. & Bootman, M. Nuclear calcium signalling by individual cytoplasmic calcium puffs. EMBO J. 16, 7166–7173 (1997).

    Article  CAS  Google Scholar 

  25. Glennon, M. C., Bird, G. S. J., Kwan, C.-Y. & Putney, J. W. Actions of vasopressin and the Ca2+-ATPase inhibitor, thapsigargin, on Ca2+ signaling in hepatocytes. J. Biol. Chem. 267, 8230–8233 (1992).

    CAS  PubMed  Google Scholar 

  26. Cameron, A.et al. Calcineurin associated with the inositol 1,4,5-trisphosphate receptor–FKBP12 complex modulates Ca2+ flux. Cell 83, 463–472 (1995).

    Article  CAS  Google Scholar 

  27. Petersen, C. C., Toescu, E. C., Potter, B. V. L. & Petersen, O. H. Inositol triphosphate produces different patterns of cytoplasmic Ca2+ spiking depending on its concentration. FEBS Lett. 293, 179–182 (1991).

    Article  CAS  Google Scholar 

  28. Nathanson, M. H., Padfield, P. J., O'Sullivan, A. J., Burgstahler, A. D. & Jamieson, J. D. Mechanism of Ca2+ wave propagation in pancreatic acinar cells. J. Biol. Chem. 267, 18118–18121 (1992).

    CAS  PubMed  Google Scholar 

  29. Grynkiewicz, G., Poenie, M. & Tsien, R. Anew generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985).

    CAS  PubMed  Google Scholar 

  30. Schlosser, S. F., Burgstahler, A. D. & Nathanson, M. H. Isolated rat hepatocytes can signal to other hepatocytes and bile duct cells by release of nucleotides. Proc. Natl Acad. Sci. USA 93, 9948–9953 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Kaftan for all his assistance during the execution of these experiments, J. Putney for suggesting RIN-5F cells as source of type III InsP3R, and J. Brown for comments on the manuscript. This work was supported by NIH grants (to B.E.E. and M.H.N.), an Established Investigator Grant from the American Heart Association (to M.H.N.), and by the Yale Liver Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Hagar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagar, R., Burgstahler, A., Nathanson, M. et al. Type III InsP3 receptor channel stays open in the presence of increased calcium. Nature 396, 81–84 (1998). https://doi.org/10.1038/23954

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23954

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing