Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tissue plasminogen activator mediates reverse occlusion plasticity in visual cortex

Abstract

Preventing visual input to one eye (monocular deprivation) in early postnatal development reduces cortical responses to stimulation of the deprived eye, with a significant loss of thalamocortical connections. These effects are reversible by opening the deprived eye and closing the previously open eye (reverse occlusion). We show that intracortical blockade of tissue plasminogen activator or plasmin selectively prevents recovery of cortical function and thalamic neuron size during reverse occlusion, without affecting the monocular deprivation response. Therefore, a proteolytic cascade consisting of plasmin generated by tissue plasminogen activator may selectively mediate reverse-occlusion-induced cortical plasticity, perhaps via structural remodeling of axons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ocular dominance distributions in control and leupeptin-infused hemispheres.
Figure 2: Identification of proteases involved in RO plasticity.
Figure 3: tPA is expressed in kitten visual cortex and LGN.
Figure 4: Mean ratios of cell sizes in LGN layers receiving deprived input (closed) to those in layers with normal input (reopened) during RO.
Figure 5: Proteolytic activities in media conditioned by organotypic slice cultures sampled over 6 consecutive days following the 17th day in vitro.

Similar content being viewed by others

References

  1. Shatz, C.J. Impulse activity and the patterning of connections during CNS development. Neuron 5, 745–756 (1990)

    Article  CAS  Google Scholar 

  2. LeVay, S., Stryker, M.P. & Shatz, C.J. Ocular dominance columns and their development in layer IV of the cat's visual cortex: a quantitative study. J. Comp. Neurol. 179, 223–244 (1978)

    Article  CAS  Google Scholar 

  3. Shatz, C.J. & Stryker, M.P. Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. J.Physiol. (Lond.) 281, 267–283 (1978)

    Article  CAS  Google Scholar 

  4. Wiesel, T.N. & Hubel, D.H. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017 (1963)

    Article  CAS  Google Scholar 

  5. Movshon, A. & Dürsteler, M.R. Effects of brief periods of unilateral eye closure on the kitten's visual cortex. J. Neurophysiol. 40, 1255–1265 (1977)

    Article  CAS  Google Scholar 

  6. Guillery, R.W. Binocular competition in the control of geniculate cell growth. J. Comp. Neurol. 144, 117–130 (1972)

    Article  CAS  Google Scholar 

  7. Antonini, A. & Stryker, M.P. Plasticity of geniculocortical afferents following brief or prolonged monocular occlusion in the cat. J. Comp. Neurol. 369, 64–82 (1996)

    Article  CAS  Google Scholar 

  8. Blakemore, C. & Van Sluyters, R.C. Reversal of the physiological effects of monocular deprivation in kittens: further evidence for a sensitive period. J. Physiol.( Lond.) 237, 195– 216 (1974)

    Article  CAS  Google Scholar 

  9. Movshon, J.A. Reversal of the physiological effects of monocular deprivation in the kitten's visual cortex. J.Physiol. (Lond.) 261, 125– 174 (1976)

    Article  CAS  Google Scholar 

  10. Dürsteler, M.R., Garey, L.J. & Movshon, J.A. Reversal of the morphological effects of monocular deprivation in the kitten's lateral geniculate nucleus. J. Physiol. (Lond.) 261, 189–210 (1976)

    Article  Google Scholar 

  11. Swindale, N.V., Vital-Durand, F. & Blakemore, C. Recovery from monocular deprivation in the monkey. Proc. R. Soc. Lond. 213, 435–450 (1981)

    Article  CAS  Google Scholar 

  12. Bear, M.F., Kleinschmidt, A., Gu, Q. & Singer, W. Disruption of experience-dependent synaptic modification in striate cortex by infusion of NMDA receptor antagonist . J. Neurosci. 10, 909– 925 (1990)

    Article  CAS  Google Scholar 

  13. Gu, Q., Bear, M.F. & Singer, W. Blockade of NMDA-receptors prevents ocularity changes in kitten visual cortex after reversed monocular deprivation. Dev. Brain Res. 47, 281–288 (1989)

    Article  CAS  Google Scholar 

  14. Kasamatsu, T. & Pettigrew, J.D. Depletion of brain catecholamines: failure of ocular dominance shift after monocular occlusion in kittens. Science 267, 1658–1662 (1976)

    Google Scholar 

  15. Bear, M.F. & Singer, W. Modulation of visual cortical plasticity by acetylcholine and noradrenaline. Nature 320, 172–176 (1986)

    Article  CAS  Google Scholar 

  16. Bonhoeffer, T. Neurotrophins and activity-dependent development of the neocortex. Curr. Opin. Neurobiol. 6, 119–126 (1996)

    Article  CAS  Google Scholar 

  17. Staubli, U., Larson, J., Thibault, O., Baudry, M. & Lynch, G. Chronic administration of a thiol-proteinase inhibitor blocks long-term potentiation of synaptic responses. Brain Res. 444, 153–158 (1988)

    Article  CAS  Google Scholar 

  18. Denny, J.B., Polan-Curtain, J., Ghuman, A., Wayner, M.J. & Armstrong, D.L., Calpain inhibitors block long-term potentiation. Brain Res. 534, 317–320 (1990)

    Article  CAS  Google Scholar 

  19. Qian, Z., Gilbert, M.E., Colicos, M.A., Kandel, E.R. & Kuhl, D. Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature 361, 453–457 (1993)

    Article  CAS  Google Scholar 

  20. Huang, Y.-Y. et al. Mice lacking the gene encoding tissue-type plasminogen activator show a selective interference with late-phase long-term potentiation in both Schaffer collateral and mossy fiber pathways. Proc. Natl. Acad. Sci. USA 93, 8699–8704 (1996)

    Article  CAS  Google Scholar 

  21. Gualandris, A., Jones, T.E., Strickland, S. & Tsirka, S.E. Membrane depolarization induces calcium-dependent secretion of tissue plasminogen activator. J. Neurosci. 16, 2220– 2225 (1996)

    Article  CAS  Google Scholar 

  22. Krystosek, A. & Seeds, N.W. Plasminogen activator release at the neuronal growth cone. Science 213, 1532 –1534 (1981)

    Article  CAS  Google Scholar 

  23. Pittman, R.N. & DiBenedetto, A.J. PC12 cells overexpressing tissue plasminogen activator regenerate neurites to a greater extent and migrate faster than control cells in complex extracellular matrix. J. Neurochem. 64, 566–575 (1995)

    Article  CAS  Google Scholar 

  24. McGuire, P.G. & Seeds, N.W. Degradation of underlying extracellular matrix by sensory neurons during neurite outgrowth. Neuron 4, 633–642 (1990)

    Article  CAS  Google Scholar 

  25. Chen, Z.-L. & Strickland, S. Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell 91, 917–925 (1997)

    Article  CAS  Google Scholar 

  26. Hamakubo,T., Kannagi, R., Murachi, T. & Matus, A. Distribution of calpains I and II in rat brain. J. Neurosci. 6, 3103 –3111 (1986)

    Article  CAS  Google Scholar 

  27. Nakajima, K., Tsuzaki, N., Nagata, K., Takemoto, N. & Kohsaka, S. Production and secretion of plasminogen in cultured rat brain microglia. FEBS Lett. 308, 179– 182 (1992)

    Article  CAS  Google Scholar 

  28. Stürzebecher, J., Neumann, U., Kohnert, U., Kresse, G.-B. & Fischer, S. Mapping of the catalytic site of CHO-t-PA and the t-PA variant BM 06.022 by synthetic inhibitors and substrates. Protein Science 1, 1007–1013 (1992)

    Article  Google Scholar 

  29. Heussen, C. & Dowdle, E.B. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal. Biochem. 102, 196– 202 (1980)

    Article  CAS  Google Scholar 

  30. Bear, M.F. & Colman, H. Binocular competition in the control of geniculate cell size depends upon visual cortical N-methyl-D-aspartate receptor activation. Proc. Natl. Acad. Sci. USA 87, 9246–9249 (1990)

    Article  CAS  Google Scholar 

  31. Tian, L.M., Otoom, S. & Alkadhi, K.A., Endogenous bursting due to altered sodium channel function in rat hippocampal CA1 neurons. Brain Res. 680, 164– 72 (1995)

    Article  CAS  Google Scholar 

  32. Mataga, N. et al. Enhancement of mRNA expression of tissue-type plasminogen activator by l-threo-3,4-dihydroxyphenylserine in association with ocular dominance plasticity. Neurosci. Lett. 218, 149–152 (1996)

    Article  CAS  Google Scholar 

  33. Tsirka, S.E., Gualandris, A., Amaral, D.G. & Strickland, S. Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator . Nature 377, 340–344 (1995)

    Article  CAS  Google Scholar 

  34. Tsirka, S.E., Rogove, A.R., Bugge, T.H., Degen, J.L. & Strickland, S. An extracellular proteolytic cascade promotes neuronal degenaration in the mouse hippocampus. J. Neurosci. 17, 543–552 (1997)

    Article  CAS  Google Scholar 

  35. Geinisman, Y., DeToledo-Morrell, L., Morrell, F., Persina, I.S. & Beatty, M.A. Synapse restructuring associated with the maintenance phase of hippocampal long-term potentiation. J. Comp. Neurol. 368, 413–423 (1996)

    Article  CAS  Google Scholar 

  36. Bolshakov, V.Y., Golan, H., Kandel, E.R. & Siegelbaum, S.A. Recruitment of new sites of synaptic transmission during the cAMP-dependent late phase of LTP at CA3-CA1 synapses in the hippocampus. Neuron 19, 635–651 (1997)

    Article  CAS  Google Scholar 

  37. Edwards, F.A. LTP - a structural model to explain the inconsistencies. Trends Neurosci. 18, 250–255 (1995)

    Article  CAS  Google Scholar 

  38. Mars, W.M., Zarnegar, R. & Michalopoulos, G.K. Activation of hepatocyte growth factor by the plasminogen activators uPA and tPA. Am. J. Pathol. 143, 949–958 (1993)

    CAS  Google Scholar 

  39. Thewke, D.P. & Seeds, N.W. Expression of hepatocyte growth factor/scatter factor, its receptor, c-met, and tissue-type plasminogen activator during development of the murine olfactory system. J. Neurosci. 16, 6933–6944 (1996)

    Article  CAS  Google Scholar 

  40. Müller, C.M., Akhavan, A.C. & Bette, M. Possible role of S-100 in glia-neuronal signalling involved in activity-dependent plasticity in the developing mammalian cortex. J. Chem. Neuroanat. 6, 215–227 (1993)

    Article  Google Scholar 

  41. Kasamatsu, T., Itakura, T. & Jonsson, G. Intracortical spread of exogenous catecholamines: effective concentration for modifying cortical plasticity. J. Pharmacol. Exp. Ther. 217, 841–850 (1981)

    CAS  Google Scholar 

  42. Stoppini, L., Buchs, P.A. & Muller, D. A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37:173–182 (1991)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Boehringer Ingelheim Fonds to C.B.G and by DFG Mü908/3-1, European Commission (DG-XII/BIOTECH) and G.A.B.I. (III) to C.M.M. We appreciate the expert technical assistance by Veronica Dossinger, Uwe Fauser and Regina Ort and are indebted to Matthias Munk and Tobias Bonhoeffer for critical comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian M. Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, C., Griesinger, C. Tissue plasminogen activator mediates reverse occlusion plasticity in visual cortex. Nat Neurosci 1, 47–53 (1998). https://doi.org/10.1038/248

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/248

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing