Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of the receptor component of the IκBα–ubiquitin ligase

Abstract

NF-κB, a ubiquitous, inducible transcription factor involved in immune, inflammatory, stress and developmental processes, is retained in a latent form in the cytoplasm of non-stimulated cells by inhibitory molecules, IκBs1,2,3. Its activation is a paradigm for a signal-transduction cascade that integrates an inducible kinase and the ubiquitin–proteasome system to eliminate inhibitory regulators. Here we isolate the pIκBα–ubiquitin ligase (pIκBα-E3) that attaches ubiquitin, a small protein which marks other proteins for degradation by the proteasome system, to the phosphorylated NF-κB inhibitor pIκBα. Taking advantage of its high affinity to pIκBα, we isolate this ligase from HeLa cells by single-step immunoaffinity purification. Using nanoelectrospray mass spectrometry, we identify the specific component of the ligase that recognizes the pIκBα degradation motif as an F-box/WD-domainprotein belonging to a recently distinguished family of β-TrCP/Slimb proteins. This component, which we denote E3RSIκB (pIκBα-E3 receptor subunit), binds specifically to pIκBα and promotes its in vitro ubiquitination in the presence of two other ubiquitin-system enzymes, E1 and UBC5C, one of many known E2 enzymes. An F-box-deletion mutant of E3RSIκB, which tightly binds pIκBα but does not support its ubiquitination, acts in vivo as a dominant-negative molecule, inhibiting the degradation of pIκBα and consequently NF-κB activation. E3RSIκB represents a family of receptor proteins that are core components of a class of ubiquitin ligases. When these receptor components recognize their specific ligand, which is a conserved, phosphorylation-based sequence motif, they target regulatory proteins containing this motif for proteasomal degradation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cytokine stimulation promotes the association between pIκBα and a specific ubiquitin ligase.
Figure 2: IκB phosphorylation is necessary and sufficient to recruit specific ubiquitin-ligase activity a, Ubiquitination assay.
Figure 3: Identification of the E3-associated, pIκBα-binding protein.
Figure 4: Binding and ubiquitination specificity of E3RS proteins.
Figure 5: Inhibition of IκBα degradation and NF-κB activation by overexpression of ΔE3RSIκB, a dominant-negative molecule.

Similar content being viewed by others

References

  1. Baldwin, A. S. J The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14, 649–683 (1996).

    Article  CAS  Google Scholar 

  2. May, M. J. & Ghosh, S. Signal transduction through NF-κB. Immunol. Today 19, 80–88 (1998).

    Article  CAS  Google Scholar 

  3. Baeuerle, P. A. & Baltimore, D. NF-κB: ten years after. Cell 87, 13–20 (1996).

    Article  CAS  Google Scholar 

  4. DiDonato, J. A., Hayakawa, M., Rothwarf, D. M., Zandi, E. & Karin, M. Acytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 388, 548–554 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Regnier, C. H. et al. Identification and characterization of an IκB kinase. Cell 90, 373–383 (1997).

    Article  CAS  Google Scholar 

  6. Mercurio, F. et al. IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science 278, 860–866 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Woronicz, J. D., Gao, X., Cao, Z., Rothe, M. & Goeddel, D. V. IκB kinase-β: NF-κB activation and complex formation with IκB kinase-α and NIK. Science 278, 866–869 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Zandi, E., Rothwarf, D. M., Delhase, M., Hayakawa, M. & Karin, M. The IκB kinase complex (IKK) contains two kinase subunits, IKKα and IKKβ, necessary for IκB phosphorylation and NF-κB activation. Cell 91, 243–252 (1997).

    Article  CAS  Google Scholar 

  9. Yamaoka, S. et al. Complementation cloning of NEMO, a component of the IκB kinase complex essential for NF-κB activation. Cell 93, 1231–1240 (1998).

    Article  CAS  Google Scholar 

  10. Rothwarf, D. M., Zandi, E., Natoli, G. & Karin, M. IKK-γ is an essential regulatory subunit of the IκB kinase complex. Nature 395, 297–300 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Cohen, L., Henzel, W. J. & Baeuerle, P. A. IKAP is a scaffold protein of the IκB kinase complex. Nature 395, 292–296 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Chen, Z. et al. Signal-induced site-specific phosphorylation targets IκBα to the ubiquitin-proteasome pathway. Genes Dev. 9, 1586–1597 (1995).

    Article  CAS  Google Scholar 

  13. Alkalay, I. et al. Stimulation-dependent IκBα phosphorylation marks the NF-κB inhibitor for degradation via the ubiquitin-proteasome pathway. Proc. Natl Acad. Sci. USA 92, 10599–10603 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Yaron, A. et al. Inhibition of NF-κB cellular function via specific targeting of the IκB-ubiquitin ligase. EMBO J. 16, 6486–6494 (1997).

    Article  CAS  Google Scholar 

  15. Wilm, M. et al. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379, 466–469 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Margottin, F. et al. Anovel human WD protein, h-βTrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol. Cell 1, 565–574 (1998).

    Article  CAS  Google Scholar 

  17. Shevchenko, A. et al. Rapid de novo peptide sequencing by a combination of nanoelectrospray, isotopic labeling and a quadrupole/time-of-flight mass spectrometer. Rapid Commun. Mass Spectrom. 11, 1015–1024 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  19. Hochstrasser, M. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30, 405–439 (1996).

    Article  CAS  Google Scholar 

  20. Varshavsky, A. The ubiquitin system. Trends Biochem. Sci. 22, 383–387 (1997).

    Article  CAS  Google Scholar 

  21. Paul, M. & Jabbar, M. A. Phosphorylation of both phosphoacceptor sites in the HIV-1 Vpu cytoplasmic domain is essential for Vpu-mediated ER degradation of CD4. Virology 232, 207–216 (1997).

    Article  CAS  Google Scholar 

  22. Jiang, J. & Struhl, G. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391, 493–496 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Skowyra, D., Craig, K. L., Tyers, M., Elledge, S. J. & Harper, J. W. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91, 209–219 (1997).

    Article  CAS  Google Scholar 

  24. Feldman, R. M., Correll, C. C., Kaplan, K. B. & Deshaies, R. J. Acomplex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91, 221–230 (1997).

    Article  CAS  Google Scholar 

  25. Patton, E. E. et al. Cdc53 is a scaffold protein for multiple Cdc34/Skp1/F-box protein complexes that regulate cell division and methionine biosynthesis in yeast. Genes Dev. 12, 692–705 (1998).

    Article  CAS  Google Scholar 

  26. Elledge, S. J. & Harper, J. W. The role of protein stability in the cell cycle and cancer. Biochim. Biophys. Acta 1377, M61–M70 (1998).

    CAS  PubMed  Google Scholar 

  27. Jensen, J. P., Bates, P. W., Yang, M., Vierstra, R. D. & Weissman, A. M. Identification of a family of closely related human ubiquitin conjugating enzymes. J. Biol. Chem. 270, 30408–30414 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Alkalay for her invaluable role in developing many of the assays used in this work, A. Ciechanover for his support and advice in the early phases of the project, and A. Mahler and A. Bar-Sinai for comments on the manuscript. This research was supported by grants from the Israel Science Foundation funded by the Israel Academy for Sciences and Humanities-Centers of Excellence Program, the German–Israel Foundation for Scientific Research and Development, and Signal Pharmaceuticals Inc. (San Diego).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinon Ben-Neriah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaron, A., Hatzubai, A., Davis, M. et al. Identification of the receptor component of the IκBα–ubiquitin ligase. Nature 396, 590–594 (1998). https://doi.org/10.1038/25159

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/25159

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing