Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Object-based attention in the primary visual cortex of the macaque monkey

Abstract

Typical natural visual scenes contain many objects, which need to be segregated from each other and from the background. Present theories subdivide the processes responsible for this segregation into a pre-attentive and attentive system1,2. The pre-attentive system segregates image regions that ‘pop out’ rapidly and in parallel across the visual field. In the primary visual cortex, responses to pre-attentively selected image regions are enhanced3,4,5. When objects do not segregate automatically from the rest of the image, the time-consuming attentive system is recruited. Here we investigate whether attentive selection is also associated with a modulation of firing rates in area V1 of the brainin monkeys trained to perform a curve-tracing task6,7. Neuronal responses to the various segments of a target curve were simultaneously enhanced relative to responses evoked by a distractor curve, even if the two curves crossed each other. This indicates that object-based attention is associated with a response enhancement at the earliest level of the visual cortical processing hierarchy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Response enhancement in area V1 during curve tracing.
Figure 2: Rate enhancement is not caused by differences in fixation behaviour between stimulus conditions.
Figure 3: Simultaneous enhancement of responses to various segments of a single curve.
Figure 4: Response enhancement to stimuli in which the target and distractor curve could intersect each other.

References

  1. Treisman, A. M. & Gelade, G. Afeature-integration theory of attention. Cogn. Psychol. 12, 97–136 (1980).

    Article  CAS  PubMed  Google Scholar 

  2. Posner, M. I. & Presti, D. E. Selective attention and cognitive control. Trends Neurosci. 10, 13–17 (1987).

    Article  Google Scholar 

  3. Lamme, V. A. F. The neurophysiology of figure-ground segregation in primary visual cortex. J. Neurosci. 15, 1605–1615 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Zipser, K., Lamme, V. A. F. & Schiller, P. H. Contextual modulation in primary visual cortex. J. Neurosci. 16, 7376–7389 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Knierim, J. J. & Van Essen, D. C. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J. Neurophysiol. 67, 961–980 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Jolicoeur, P., Ullman, S. & MacKay, M. Curve tracing: a possible basic operation in the perception of spatial relations. Mem Cognit. 14, 129–140 (1986).

    Article  CAS  PubMed  Google Scholar 

  7. Pringle, R. & Egeth, H. E. Mental curve tracing with elementary stimuli. J. Exp. Psychol.: Hum. Percept. Perform. 14, 716–728 (1988).

    CAS  Google Scholar 

  8. Posner, M. I., Snyder, C. R. R. & Davidson, B. J. Attention and the detection of signals. J. Exp. Psychol.: Gen. 109, 160–174 (1980).

    Article  CAS  Google Scholar 

  9. Eriksen, C. W. & St. James, J. D. Visual attention within and around the field of focal attention: a zoom lens model. Percept. Psychophys. 40, 225–240 (1986).

    Article  CAS  Google Scholar 

  10. Mausell, J. H. R. The brain's visual world: representation of visual targets in cerebral cortex. Science 270, 764–769 (1995).

    Article  ADS  Google Scholar 

  11. Moran, J. & Desimone, R. Selective attention gates visual processing in the extrastriate cortex. Science 229, 782–784 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Luck, S. J., Chelazzi, L., Hillyard, S. A. & Desimone, R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J. Neurophysiol. 77, 24–42 (1997).

    Article  CAS  Google Scholar 

  13. Treue, S. & Maunsell, J. H. R. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382, 539–541 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Bushnell, M. C., Goldberg, M. E. & Robinson, D. L. Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. J. Neurophysiol. 46, 755–772 (1981).

    Article  CAS  PubMed  Google Scholar 

  15. Motter, B. C. Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. J. Neurophysiol. 70, 909–919 (1993).

    Article  CAS  Google Scholar 

  16. Press, W. A. & van Essen, D. C. Attentional modulation of neuronal responses in macaque area V1. Soc. Neurosci. Abstr. 23, 1026 (1997).

    Google Scholar 

  17. Wurtz, R. H. & Mohler, C. W. Enhancement of visual responses in monkey striate cortex and frontal eye fields. J. Neurophysiol. 39, 766–772 (1976).

    Article  CAS  PubMed  Google Scholar 

  18. Haenny, P. E. & Schiller, P. H. State dependent activity in monkey visual cortex. I. Single cell activity in V1 and V4 on visual tasks. Exp. Brain Res. 69, 225–244 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Duncan, J. Selective attention and the organization of visual information. J. Exp. Psychol.: Gen. 113, 501–517 (1984).

    Article  CAS  Google Scholar 

  20. Kanwisher, N. & Driver, J. Objects, attributes, and visual attention: which what and where. Curr. Dir. Psychol. Sci. 1, 26–31 (1997).

    Article  Google Scholar 

  21. Rock, I. & Palmer, S. The legacy of Gestalt psychology. Sci. Am. 263(6), 48–61 (1990).

    Google Scholar 

  22. Kramer, A. F. & Jacobson, A. Perceptual organization and focused attention: the role of objects and proximity in visual processing. Percept. Psychophys. 50, 267–284 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Nelson, J. I. & Frost, B. J. Intracortical facilitation among co-oriented, co-axially aligned simple cells in cat striate cortex. Exp. Brain Res. 61, 54–61 (1985).

    Article  CAS  PubMed  Google Scholar 

  24. Kapadia, M. K., Ito, M., Gilbert, C. D. & Westheimer, G. Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron 15, 843–856 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Polat, U., Mizobe, K., Pettet, M. W., Kasamatsu, T. & Norcia, A. M. Collinear stimuli regulate visual responses depending on cell's contrast threshold. Nature 391, 580–584 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Bosking, W. H., Zhang, Y., Schofield, B. & Fitzpatrick, D. Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 15, 2112–2127 (1997).

    Article  Google Scholar 

  27. Schmidt, K. E., Goebel, R., Löwel, S. & Singer, W. The perceptual grouping criterion of colinearity is reflected by anisotropies of connections in the primary visual cortex. Eur. J. Neurosci. 9, 1083–1089 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Bour, L. J., Van Gisbergen, J. A. M., Bruijns, J. & Ottes, F. P. The double magnetic induction method for measuring eye movement — results in monkey and man. IEEE Trans. Biomed. Eng. 31, 419–427 (1984).

    Article  CAS  PubMed  Google Scholar 

  29. Snodderly, D. M. & Gur, M. Organizaton of striate cortex of alert, trained monkeys (Macaca fascicularis): ongoing activity, stimulus selectivity, and widths of receptive field activating regions. J. Neurophysiol. 74, 2100–2125 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Gattass, R., Gross, C. G. & Sandell, J. H. Visual topography of V2 in the macaque. J. Comp. Neurol. 201, 519–539 (1981).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. C. de Feiter and K. Brandsma for technical assistance. The research of P.R.R. and V.A.F.L. was funded by a fellowship from the Royal Netherlands Academy of Arts and Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter R. Roelfsema.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roelfsema, P., Lamme, V. & Spekreijse, H. Object-based attention in the primary visual cortex of the macaque monkey. Nature 395, 376–381 (1998). https://doi.org/10.1038/26475

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/26475

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing