Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo

Abstract

The basal ganglia are an interconnected set of subcortical regions whose established role in cognition and motor control remains poorly understood. An important nucleus within the basal ganglia, the striatum, receives cortical afferents that convey sensorimotor, limbic and cognitive information1. The activity of medium-sized spiny neurons in the striatum seems to depend on convergent input within these information channels2. To determine the degree of correlated input, both below and at threshold for the generation of action potentials, we recorded intracellularly from pairs of spiny neurons in vivo. Here we report that the transitions between depolarized and hyperpolarized states were highly correlated among neurons. Within individual depolarized states, some significant synchronous fluctuations in membrane potential occurred, but action potentials were not synchronized. Therefore, although the mean afferent signal across fibres is highly correlated among striatal neurons, the moment-to-moment variations around the mean, which determine the timing of action potentials, are not. We propose that the precisely timed, synchronous component of the membrane potential signals activation of cell assemblies and enables firing to occur. The asynchronous component, with low redundancy, determines the fine temporal pattern of spikes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Membrane potentials of striatal spiny neurons show distinct ‘up’ and ‘down’ states.
Figure 2: State transitions are synchronous among spiny neurons.
Figure 3: Membrane potential synchrony within ‘up’ states.
Figure 4: Spike auto- and cross-correlograms for a pair of striatal spiny neurons, calculated with 10 ms bin-width.

Similar content being viewed by others

References

  1. Graybiel, A. M., Aosaki, T., Flaherty, A. W. & Kimura, M. The basal ganglia and adaptive motor control. Science 265, 1826–1831 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Wilson, C. J. in The Synaptic Organization of the Brain (ed. Shepherd, G.) 329–375 (Oxford Univ. Press, New York, (1997)).

    Google Scholar 

  3. Wilson, C. J. & Groves, P. M. Spontaneous firing patterns of identified spiny neurons in the rat neostriatum. Brain Res. 220, 67–80 (1981).

    Article  CAS  Google Scholar 

  4. Wilson, C. J. & Kawaguchi, Y. The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J. Neurosci. 16, 2397–2410 (1996).

    Article  CAS  Google Scholar 

  5. Stern, E. A., Kincaid, A. E. & Wilson, C. J. Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. J. Neurophysiol. 77, 1697–1715 (1997).

    Article  CAS  Google Scholar 

  6. Wickens, J. R. & Wilson, C. J. Regulation of action potential firing in spiny neurons of the rat neostriatum in vivo. J. Neurophysiol. 79, 2358–2364 (1998).

    Article  CAS  Google Scholar 

  7. Choi, S. & Lovinger, D. M. Decreased frequency but not amplitude of quantal synaptic responses associated with expression of corticostriatal long-term depression. J. Neurosci. 17, 8613–8620 (1997).

    Article  CAS  Google Scholar 

  8. Wilson, C. J. in Single Neuron Computation (eds McKenna, T., Davis, J. & Zornetzer, S. F.) 141–171 (Academic, San Diego, (1992)).

    Book  Google Scholar 

  9. Alexander, G. E. & DeLong, M. R. Microstimulation of the primate neostriatum. I. Physiological properties of striatal microexcitable zones. J. Neurophysiol. 53, 1401–1416 (1985).

    Article  CAS  Google Scholar 

  10. Flaherty, A. W. & Graybiel, A. M. Two input systems for body representations in the primate striatal matrix: Experimental evidence in the squirrel monkey. J. Neurosci. 13, 1120–1137 (1993).

    Article  CAS  Google Scholar 

  11. Alexander, G. E. & DeLong, M. R. Microstimulation of the primate neostriatum. II. Somatotopic organization of striatal microexcitable zones and their relation to neuronal response properties. J.Neurophysiol. 53, 1417–1430 (1985).

    Article  CAS  Google Scholar 

  12. Jaeger, D., Gilman, S. & Aldridge, J. W. Neuronal activity in the striatum and palladium of primates related to the execution of externally cued reaching movements. Brain Res. 694, 11–127 (1995).

    Article  Google Scholar 

  13. Diggle, P. Time Series (Oxford Univ. Press, (1990)).

    MATH  Google Scholar 

  14. Abeles, M. Quantification, smoothing, and confidence limits for single-units' histograms. J. Neurosci. Methods 5, 317–325 (1982).

    Article  CAS  Google Scholar 

  15. Wilson, C. J. Postsynaptic potentials evoked in spiny neostriatal projection neurons by stimulation of ipsilateral and contralateral cortex. Brain Res. 367, 201–213 (1986).

    Article  CAS  Google Scholar 

  16. Perkel, D. H., Gerstein, G. L. & Moore, G. P. Neuronal spike trains and stochastic point processes. Biophys. J. 7, 419–440 (1967).

    Article  CAS  Google Scholar 

  17. Onn, S. P. & Grace, A. A. Dye coupling between rat striatal neurons recorded in vivo: compartmental organization and modulation by dopamine. J. Neurophysiol. 71, 1917–1934 (1994).

    Article  CAS  Google Scholar 

  18. Jaeger, D., Kita, H. & Wilson, C. J. Surround inhibition among projection neurons in weak or nonexistent in the rat neostriatum. J. Neurophysiol. 72, 2555–2558 (1994).

    Article  CAS  Google Scholar 

  19. Steriade, M., Nunez, A. & Amzica, F. Anovel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13, 3252–3265 (1993).

    Article  CAS  Google Scholar 

  20. Amzica, F. & Steriade, M. Short- and long-range neuronal synchronization of the slow (<1 Hz) cortical oscillation. J. Neurophysiol. 73, 20–38 (1995).

    Article  CAS  Google Scholar 

  21. Contreras, D. & Steriade, M. State-dependent fluctuations of low-frequency rhythms in corticothalamic rhythms. Neuroscience 76, 25–38 (1995).

    Article  Google Scholar 

  22. Douglas, R. J., Martin, K. A. C. & Whitteridge, D. An intracellular analysis of the visual responses of neurons in cat visual cortex. J. Physiol. (Lond.) 440, 659–696 (1991).

    Article  CAS  Google Scholar 

  23. Wilson, C. J. The generation of natural firing patterns in neostriatal neurons. Prog. Brain Res. 99, 277–297 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Hull, C. D., Bernardi, G. & Buchwald, N. A. Intracellular responses of caudate neurons to brain stem stimulation. Brain Res. 22, 163 (1970).

    Article  CAS  Google Scholar 

  25. Plenz, D. & Kitai, S. T. Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex-striatum-substantia nigra organotypic cultures. J. Neurosci. 18, 266–283 (1998).

    Article  CAS  Google Scholar 

  26. Stern, E. A., Aertsen, A., Vaadia, E. & Hochstein, S. Stimulus encoding by multidimensional receptive fields in single cells and cell populations in V1 of awake monkey. Adv. Neural Inf. Process. Systems 5, 377 (1993).

    Google Scholar 

  27. Arieli, A., Sterkin, A., Grinvald, A. & Aertsen, A. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273, 1868–1871 (1996).

    Article  ADS  CAS  Google Scholar 

  28. O'Keefe, J. & Reece, M. L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993).

    Article  CAS  Google Scholar 

  29. Skaggs, W. E., McNaughton, B. L., Wilson, M. A. & Barnes, C. A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172 (1996).

    Article  CAS  Google Scholar 

  30. Horikawa, K. & Armstrong, W. E. Aversatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. J. Neurosci. Methods 25, 1–11 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the NIH. We thank B. Mattix for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward A. Stern.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stern, E., Jaeger, D. & Wilson, C. Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo. Nature 394, 475–478 (1998). https://doi.org/10.1038/28848

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/28848

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing