Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gating of a muscle K+ channel and its dependence on the permeating ion species

Abstract

In excitable cells, ions permeate the cell membrane through ionic channels, some of which open and close in response to changes in the potential difference across the membrane. It has been supposed that this opening and closing (or gating) process is largely independent of the permeating ion. However, we show here that the gating of the resting potassium permeability of frog skeletal muscle depends on the species of ion which carries current across the membrane. The potassium permeability investigated allows K+ to move in across the membrane more easily than out1,2. This property is known as inward or anomalous rectification and is shared by cell membranes of skeletal muscle1–3, egg4 and certain other cells5–7. In both egg cells8 and skeletal muscle fibres9, the group IIIB metal ion T1+, which can replace K+ in several other systems in experimental conditions10–12, also permeates the inward rectifier. Indeed, Tl+ is more permeant than K+ (refs 8, 9). However, when Tl+ carries current inwards across the membrane, the inward rectifier inactivates over a brief period when the membrane is hyper-polarized, whereas when K+ carries current, the permeability increases with time under hyperpolarization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Katz, B. Archs Sci. Physiol. 3, 285–299 (1949).

    CAS  Google Scholar 

  2. Hodgkm, A. L. & Horowicz, P. J. Physiol., Land. 148, 127–160 (1959).

    Article  Google Scholar 

  3. Adrian, R. H. & Freygang, W. H. J. Physiol., Lond. 163, 104–114 (1962).

    Article  CAS  Google Scholar 

  4. Hagiwara, S. & Takahashi, K. J. Membrane Biol. 18, 61–80 (1974).

    Article  CAS  Google Scholar 

  5. Hall, A. E., Hutter, O. F. & Noble, D. J. Physiol., Lond. 166, 225–240 (1963).

    Article  CAS  Google Scholar 

  6. Kandel, E. R. & Tauc, L. J. Physiol., Lond. 183, 287–304 (1966).

    Article  CAS  Google Scholar 

  7. Nelson, P. G. & Frank, K. J. Neurophysiol. 30, 1097–1113 (1967).

    Article  CAS  Google Scholar 

  8. Hagiwara, S., Miyazaki, S., Krasne, S. & Ciani, S. J. gen. Physiol. 70, 269–281 (1977).

    Article  CAS  Google Scholar 

  9. Gay, L. A. thesis, Univ. Leicester (1979).

  10. Cavieres, J. D. & Ellory, J. C. J. Physiol., Lond. 243, 243–266 (1974).

    Article  CAS  Google Scholar 

  11. Hille, B. J. gen. Physiol. 61, 669–689 (1973).

    Article  CAS  Google Scholar 

  12. Hughes, M. N., Man, W. K. & Whaler, B. C. J. Physiol., Lond. 256, 126P–127P (1976).

    CAS  Google Scholar 

  13. Adrian, R. H., Chandler, W. K. & Hodgkin, A. L. J. Physiol., Lond. 208, 607–644 (1970).

    Article  CAS  Google Scholar 

  14. Almers, W. thesis, Univ. Rochester (1971).

  15. Hestrin, S. Soc. Neurosci. Abstr. 5, 292 (1979).

    Google Scholar 

  16. Hagiwara, S., Miyazaki, S. & Rosenthal, N. P. J. gen. Physiol. 65, 621–638 (1976).

    Article  Google Scholar 

  17. Adrian, R. H. & Freygang, W. H. J. Physiol., Lond. 163, 61–103 (1962).

    Article  CAS  Google Scholar 

  18. Standen, N. B. & Stanfield, P. R. J. Physiol., Lond. 294, 497–520 (1979).

    Article  CAS  Google Scholar 

  19. Almers, W. J. Physiol., Lond. 225, 33–56, 57–86 (1972).

    Article  CAS  Google Scholar 

  20. Standen, N. B. & Stanfield, P. R. J. Physiol., Lond. 280, 169–191 (1978).

    Article  CAS  Google Scholar 

  21. Adrian, R. H., Chandler, W. K. & Hodgkin, A. L. J. Physiol., Lond. 208, 645–668 (1970).

    Article  CAS  Google Scholar 

  22. Brehm, P. & Eckert, R. Science 202, 1203–1206 (1978).

    Article  ADS  CAS  Google Scholar 

  23. Tillotson, D. Proc. Natn. Acad. Sci. U.S.A. 76, 1497–1500 (1979).

    Article  ADS  CAS  Google Scholar 

  24. Ashcroft, F. M. & Stanfield, P. R. J. Physiol., Lond. 308, 36P (1980).

    Google Scholar 

  25. Stanfield, P. R. & Ashcroft, F. M. Proc. IUPS 14, 716 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanfield, P., Ashcroft, F. & Plant, T. Gating of a muscle K+ channel and its dependence on the permeating ion species. Nature 289, 509–511 (1981). https://doi.org/10.1038/289509a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/289509a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing