Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA-dependent protein kinase acts upstream of p53 in response to DNA damage

Abstract

The tumour suppressor p53 becomes activated as a transcription factor in response to DNA damage1,2,3, but the mechanism for this activation is unclear. A good candidate for an upstream activator of p53 is the DNA-dependent protein kinase (DNA-PK) that depends on the presence of DNA breaks for its activity4,5,6. Here we investigate the link between DNA damage and the activation of DNA-PK and of p53. To determine whether DNA-PK is an upstream mediator of the p53 DNA-damage response, we analysed a severe combined-immunodeficiency (SCID) mouse cell line, SCGR11 (refs 7, 8), and the human glioma cell line M059J (ref. 9). Both cell lines lack any detectable DNA-PK activity. We find that p53 is incapable of binding to DNA in the absence of DNA-PK, that DNA-PK is necessary but not sufficient for activation of p53 sequence-specific DNA binding, and that this activation occurs in response to DNA damage. Our results establish DNA-PK as a link between DNA damage and p53 activation, and reveal the existence of a mammalian DNA-damage-response pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effect of DNA damage on p53 DNA-binding activity in nuclear extracts from DNA-PK-deficient SCGR11 cells.
Figure 2: The effect of DNA damage on p53-dependent transactivation in the SCGR11 cells.
Figure 3: Comparing primary SCID cells and the SCRG11 SCID cell line in terms of DNA-PK activity and p53 DNA-binding activity.
Figure 4: The effect of M059K and M059J nuclear extracts on DNA-binding activity of in vitro -synthesized p53 and SCGR11-cell p53.
Figure 5: Defining the role of DNA-PK in p53 DNA-binding activity.

Similar content being viewed by others

References

  1. Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R. W. Participation of p53 in the cellular response to DNA damage. Cancer Res. 51, 6304–6311 (1991).

    CAS  PubMed  Google Scholar 

  2. Tishler, R. B., Calderwood, S. K., Coleman, C. N. & Price, B. D. Increases in sequence-specific DNA binding by p53 following treatment with chemotherapeutic and DNA damaging agents. Cancer Res. 53, 2212–2216 (1993).

    CAS  PubMed  Google Scholar 

  3. Nelson, W. G. & Kastan, M. B. DNA strand breaks: The DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol. Cell. Biol. 14, 1815–1823 (1994).

    Article  CAS  Google Scholar 

  4. Anderson, C. W. & Lees-Miller, S. P. The human DNA-activated protein kinase DNA-PK. Crit. Rev. Eukaryot. Gene Expr. 2, 283–314 (1992).

    CAS  PubMed  Google Scholar 

  5. Gottlieb, T. M. & Jackson, S. P. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72, 131–142 (1993).

    Article  CAS  Google Scholar 

  6. Morozov, V. E., Falzon, M., Anderson, C. W. & Kuff, E. L. DNA-dependent protein kinase is activated by nicks and larger single-stranded gaps. J. Biol. Chem. 269, 16684–16688 (1994).

    CAS  PubMed  Google Scholar 

  7. Hendrickson, E. A. et al. Alink between double-strand break-related repair and V(D)J recombination: The SCID mutation. Proc. Natl Acad. Sci. USA 88, 4061–4065 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Blunt, T. et al. Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine SCID mutation. Cell 80, 813–823 (1995).

    Article  CAS  Google Scholar 

  9. Lees-Miller, S. P. et al. Absence of p350 subunit of DNA-activated protein kinase from a radiosensitive human cell line. Science 267, 1183–1185 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Kern, S. E. et al. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256, 827–830 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. & Elledge, S. J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816 (1993).

    Article  CAS  Google Scholar 

  12. El-Diery, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  Google Scholar 

  13. Bogue, M. A., Zhu, C., Aguilar-Cordova, E., Donehower, L. A. & Both, D. B. p53 is required for both radiation-induced differentiation and rescue of V(D)J rearrangement in SCID mouse thymocytes. Genes Dev. 10, 553–565 (1996).

    Article  CAS  Google Scholar 

  14. Guidos, C. J. et al. V(D)J recombination activates a p53-dependent DNA damage checkpoint in SCID lymphocyte precursors. Genes Dev. 10, 2038–2054 (1996).

    Article  CAS  Google Scholar 

  15. Huang, L., Clarkin, K. C. & Wahl, G. M. p53-dependent cell cycle arrests are preserved in DNA-activated protein kinase-deficient mouse fibroblasts. Cancer Res. 56, 2940–2944 (1996).

    CAS  PubMed  Google Scholar 

  16. Nacht, M. et al. Mutations in the p53 and SCID genes cooperate in tumorigenesis. Genes Dev. 10, 2055–2066 (1996).

    Article  CAS  Google Scholar 

  17. Zhu, C., Bogue, M. A., Lim, D., Hasty, P. & Roth, D. B. Ku86-deficient mice exhibit severe combined immunodeficiency and defective processing of V(D)J recombination intermediates. Cell 86, 379–389 (1996).

    Article  CAS  Google Scholar 

  18. Jhappan, C., Morse, H. C., Fleischmann, R. D., Gottesman, M. M. & Merlino, G. DNA-PKCS: a T-cell tumour supressor encoded at the mouse scid locus. Nature Genet. 17, 483–486 (1997).

    Article  CAS  Google Scholar 

  19. Hollstein, M. et al. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res. 22, 3551–3555 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lees-Miller, S. P., Sakaguchi, K., Ullrich, S., Appella, E. & Anderson, C. W. Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol. Cell. Biol. 12, 5041–5049 (1992).

    Article  CAS  Google Scholar 

  21. Shieh, S.-Y., Ikeda, M., Taya, Y. & Prives, C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325–334 (1997)

    Article  CAS  Google Scholar 

  22. Abbondanzo, S. J., Gadi, I. & Stewart, C. L. Derivation of embryonic stem cell lines. Methods Enzymol. 225, 803–823 (1993).

    Article  CAS  Google Scholar 

  23. McLure, K. G. & Lee, P. W. K. How p53 binds DNA as a tetramer. EMBO J. 17, 3342–3350 (1998).

    Article  CAS  Google Scholar 

  24. Chen, C. & Okayama, H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7, 2745–2752 (1987).

    Article  CAS  Google Scholar 

  25. Neumann, J. R., Morency, C. A. & Russian, K. O. Anovel rapid assay for chloramphenicol acetyltransferase gene expression. Biotechniques 5, 444–448 (1987).

    CAS  Google Scholar 

  26. Wong, H., Anderson, W. D., Cheng, T. & Riabowol, K. T. Monitoring mRNA expression by polymerase chain reaction: The “primer-dropping” method. Anal. Biochem. 223, 251–258 (1994).

    Article  CAS  Google Scholar 

  27. Skup, D. & Millward, S. Reovirus-induced modification of cap-dependent translation in infected L cells. Proc. Natl Acad. Sci. USA 77, 152–156 (1980).

    Article  ADS  CAS  Google Scholar 

  28. Milner, J., Medcalf, E. A. & Cook, A. C. Tumor suppressor p53: Analysis of wild-type and mutant p53 complexes. Mol. Cell. Biol. 11, 12–19 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Jeggo for SCGR11 SCID cells, J. Allalunis-Turner for M059J and M059K cells, J. Milner for the wild-type murine p53 plasmid pSP6p53-Ala, B. Vogelstein for pG13CAT, J. Martinez for the pAb421 antibody, D. Chan for purifying DNA-PK, and E. Rattner and B. Carson for help with the preparation of mouse embryo fibroblasts. This work was supported by a grant (to P.W.K.L.) from the Alberta Cancer Board; K.G.M. was a recipient of the Alberta Heritage Foundation for Medical Research studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick W. K. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, R., McLure, K., Lees-Miller, S. et al. DNA-dependent protein kinase acts upstream of p53 in response to DNA damage. Nature 394, 700–704 (1998). https://doi.org/10.1038/29343

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29343

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing