Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rapid lateral diffusion of functional ACh receptors in embryonic muscle cell membrane

Abstract

During synaptogenesis of the skeletal neuromuscular junction, the acetylcholine (ACh) receptors dispersed over the surface of the embryonic muscle become highly concentrated at the subsynaptic membrane1,2. The mechanism by which a nerve induces such a modulation of ACh receptor topography is unknown. Of various possibilities3, the simplest explanation is that the ACh receptors, freely diffusing in the plane of the muscle membrane, are trapped at the site of nerve contact4,5. This ‘diffusion-trap’ mechanism is plausible only if the diffusion distance covered by the ACh receptors within its lifetime on the cell surface is at least comparable with the dimension of the embryonic muscle fibre (see also discussion in ref. 1). Photo-bleaching studies had suggested that this was not the case. In the present study, an electrophysiological method was used to measure the lateral diffusion of the dispersed, functional ACh receptors in the plasma membrane of cultured Xenopus embryonic muscle cells. The results suggest that these ACh receptors undergo rapid lateral diffusion with a diffusion coefficient of 2.6 × 10−9 cm2 s−1 at 22 °C. This rapid diffusion of the dispersed ACh receptors strongly supports a passive diffusion-trap mechanism for the localization of ACh receptors at the site of nerve–muscle contact.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fambrough, D. M. Physiol. Rev. 59, 165–227 (1979).

    Article  CAS  Google Scholar 

  2. Lømo, T. & Jansen, J. K. S. Curr. Topics dev. Biol. 16, 253–281 (1980).

    Article  Google Scholar 

  3. Fraser, S. E. & Poo, M-m. Curr. Topics dev. Biol. 17 (in the press).

  4. Edwards, C. & Frisch, H. L. J. Neurobiol. 7, 377–381 (1976).

    Article  CAS  Google Scholar 

  5. Chao, N. M., Young, S. H. & Poo, M-m. Biophys. J. 36, 139–153 (1981).

    Article  CAS  Google Scholar 

  6. Orida, N. & Poo, M-m. Nature 275, 31–35 (1978).

    Article  ADS  CAS  Google Scholar 

  7. Brockes, J. P. & Hall, Z. W. Biochemistry 14, 2100–2106 (1975).

    Article  CAS  Google Scholar 

  8. Poo, M-m., Poo, W-j. H. & Lam, J. J. Cell Biol. 76, 483–501 (1978).

    Article  CAS  Google Scholar 

  9. Poo, M-m., Lam, J., Orida, N. & Chao, A. W. Biophys. J. 26, 1–22 (1979).

    Article  CAS  Google Scholar 

  10. Poo, M-m. A. Rev. Biophys. Bioengng 10, 245–276 (1981).

    Article  CAS  Google Scholar 

  11. Huang, N. W. J. theor. Biol. 40, 11–16 (1973).

    Article  CAS  Google Scholar 

  12. Hartzell, M. C. & Fambrough, D. M. J. gen. Physiol. 60, 248–262 (1972).

    Article  CAS  Google Scholar 

  13. Poo, M-m. & Cone, R. A. Nature 247, 438–444 (1974).

    Article  ADS  CAS  Google Scholar 

  14. Edidin, M. & Fambrough, D. J. Cell Biol. 57, 27–53 (1973).

    Article  CAS  Google Scholar 

  15. Axelrod, D. et al. Proc. natn. Acad. Sci. U.S.A. 12, 4594–4598 (1976).

    Article  ADS  Google Scholar 

  16. Anderson, M. J. & Cohen, M. W. J. Physiol., Lond. 268, 757–773 (1977).

    Article  CAS  Google Scholar 

  17. Anderson, M. J., Cohen, M. W. & Zorychta, E. J. Physiol., Lond. 268, 731–756 (1977).

    Article  CAS  Google Scholar 

  18. Frank, E. & Fishbach, G. D. J. Cell Biol. 83, 143–158 (1979).

    Article  CAS  Google Scholar 

  19. Cohen, M. W., Anderson, M. J., Zorychta, E. & Weldon, P. R. Prog. Brain Res. 49, 335–349 (1979).

    Article  CAS  Google Scholar 

  20. Christian, C. N. et al. Proc. natn. Acad. Sci. U.S.A. 75, 4011–4015 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Podleski, T. R. et al. Proc. natn. Acad. Sci. U.S.A. 75, 2035–2039 (1978).

    Article  ADS  CAS  Google Scholar 

  22. Jessell, T. M., Siegal, R. E. & Fischbach, G. D. Proc. natn. Acad. Sci. U.S.A. 75, 4011–4015 (1979).

    Google Scholar 

  23. Gingell, D. in Mammalian Cell Membranes (eds Jamieson, G. A. & Robinson, D. M.) 198–223 (Butterworth, London, 1976).

    Book  Google Scholar 

  24. Bloch, R. J. & Geiger, B. Cell 21, 25–35 (1980).

    Article  CAS  Google Scholar 

  25. Jones, R. & Vrbova, G. J. Physiol., Lond. 236, 517–538 (1974).

    Article  CAS  Google Scholar 

  26. Peng, H. B., Cheng, P. C. & Luther, P. W. Nature 292, 831–834 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poo, Mm. Rapid lateral diffusion of functional ACh receptors in embryonic muscle cell membrane. Nature 295, 332–334 (1982). https://doi.org/10.1038/295332a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/295332a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing