Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antibodies to gap-junctional protein selectively disrupt junctional communication in the early amphibian embryo

Abstract

Antibodies to the major protein of rat liver gap junctions, molecular weight 27,000 (27K), have been microinjected into one identified cell of 8-cell stage Xenopus embryos. This treatment selectively disrupts both dye transfer and electrical coupling between the progeny cells. These results provide evidence that the 27K protein is an integral component of the cell-to-cell junctional channel. The disruption of junctional communication at early stages results in specific developmental defects, suggesting that blocking intercellular communication can have a pronounced influence on embryonic development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gilula, N. B., Reeves, O. R. & Steinbach, A. Nature 235, 262–265 (1972).

    Article  ADS  CAS  Google Scholar 

  2. Spray, D. C., Harris, A. L. & Bennett, M. V. L. in Cellular Communication During Ocular Development (eds Sheffield, J. B. & Hilfer, S. R.) 57–84 (Springer, New York, 1982).

    Google Scholar 

  3. Potter, D. D., Furshpan, E. J. & Lennox, E. Proc. natn. Acad. Sci. U.S.A. 55, 328–336 (1966).

    Article  ADS  CAS  Google Scholar 

  4. Rose, B. & Loewenstein, W. R. J. Membrane Biol. 28, 87–119 (1976).

    Article  CAS  Google Scholar 

  5. Turin, L. & Warner, A. E. J. Physiol., Lond. 300, 489–504 (1980).

    Article  CAS  Google Scholar 

  6. Johnston, M. F., Simon, S. A. & Ramon, F. Nature 286, 498–500 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Henderson, D., Eibl, H. & Weber, K. J. molec. Biol. 132, 193–218 (1979).

    Article  CAS  Google Scholar 

  8. Hertzberg, E. L. & Gilula, N. B. J. biol. Chem. 254, 2138–2147 (1979).

    CAS  PubMed  Google Scholar 

  9. Hertzberg, E. L. J. biol. Chem. 259, 9936–9943 (1984).

    CAS  PubMed  Google Scholar 

  10. Epstein, M. L., Sheridan, J. D. & Johnson, R. G. Expl Cell Res. 104, 25–30 (1977).

    Article  CAS  Google Scholar 

  11. Newport, J. & Kirschner, M. Cell 30, 675–686 (1982).

    Article  CAS  Google Scholar 

  12. Lee, G., Hynes, R., Kirschner, M. Cell 36, 729–740 (1984).

    Article  CAS  Google Scholar 

  13. Slack, C., Warner, A. E. & Warren, R. L. J. Physiol., Lond. 232, 297–312 (1973).

    Article  CAS  Google Scholar 

  14. Guthrie, S. C. Nature 310, 149–151 (1984).

    Article  ADS  Google Scholar 

  15. Rink, T. J., Tsien, R. Y. & Warner, A. E. Nature 283, 658–660 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Porter, R. R. Biochem. J. 73, 119–126 (1959).

    Article  CAS  Google Scholar 

  17. Slemmon, J. R., Salvaterra, P. M. & Saito, K. J. Histochem. Cytochem. 28, 10–15 (1980).

    Article  CAS  Google Scholar 

  18. Epstein, M. L. & Gilula, N. B. J. Cell Biol. 75, 769–787 (1977).

    Article  CAS  Google Scholar 

  19. Makowski, L., Caspar, D. L. D., Phillips, W. C. & Goodenough, D. A. J. Cell Biol. 74, 629–645 (1977).

    Article  CAS  Google Scholar 

  20. Unwin, P. N. T. & Zampighi, G. Nature 283, 545–549 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Parikh, I., March, S. & Cuatrecasas, P. Meth. Enzym. 346, 77–102 (1974).

    Article  Google Scholar 

  22. Laemmli, U. K. Nature 227, 680–695 (1970).

    Article  ADS  CAS  Google Scholar 

  23. Towbin, H., Staehelin, T. & Gordon, J. Proc. natn. Acad. Sci. U.S.A. 76, 4350–4354 (1979).

    Article  ADS  CAS  Google Scholar 

  24. Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus laevis (Davdin) (North-Holland, Amsterdam, 1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warner, A., Guthrie, S. & Gilula, N. Antibodies to gap-junctional protein selectively disrupt junctional communication in the early amphibian embryo. Nature 311, 127–131 (1984). https://doi.org/10.1038/311127a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/311127a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing