Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A Ca-dependent Cl conductance in cultured mouse spinal neurones

Abstract

Long-lasting conductance changes triggered either by brief (millisecond) electrical stimuli and/or entry of calcium ions have been observed in a variety of excitable tissues1–4. The electrical consequences of these events depend on the ion conductance affected and on the ion concentration gradient across the membrane, while the long-lasting nature of the change sustains the cell at either sub- or supra-threshold levels for activation of regenerative action potentials. We report here that many cultured mouse spinal neurones exhibit a voltage-activated chloride conductance that lasts for seconds and is dependent on extracellular calcium, [Ca2+]0. This conductance may repolarize and stabilize the cell at a level subthreshold for generating action potentials, thus complementing the functional roles of Ca-dependent K+ conductances5–8.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Legendre, P., Cooke, I. M. & Vincent, J.-D. J. Neurophysiol. 48, 1121–1141 (1982).

    Article  CAS  Google Scholar 

  2. Dichter, M. A. & Fischbach, G. D. J. Physiol., Lond. 267, 281–298 (1977).

    Article  CAS  Google Scholar 

  3. Fukada, J., Fischbach, G. D. & Smith, T. G. Jr Devl Biol. 49, 412–424 (1976).

    Article  Google Scholar 

  4. MacDonald, J. F. & Schneiderman, H. H. Brain Res. 296, 350–355 (1984).

    Article  CAS  Google Scholar 

  5. Barrett, E. F. & Barrett, J. N. J. Physiol., Lond. 255, 737–774 (1976).

    Article  CAS  Google Scholar 

  6. Aldrich, R. W., Getting, P. A. & Thompson, S. H. J. Physiol., Lond. 291, 531–544 (1979).

    Article  Google Scholar 

  7. McAfee, D. A. & Tarowsky, P. J. J. Physiol., Lond. 290, 507–523 (1979).

    Article  CAS  Google Scholar 

  8. Barrett, E. F., Barrett, J. N. & Crill, W. E. J. Physiol., Lond. 304, 251–276 (1980).

    Article  CAS  Google Scholar 

  9. Ransom, B. R., Neale, E., Henkart, M., Bullock, P. N. & Nelson, P. G. J. Neurophysiol. 40, 1132–1150 (1981).

    Article  Google Scholar 

  10. Adams, P. R. in Advances in Physiological Sciences Vol. 4 (ed. Salankim, J.) 135–138 (Pergamon, New York, 1981).

    Google Scholar 

  11. Puil, E. & Werman, R. Can. J. Physiol. Pharmac. 59, 1280–1284 (1981).

    Article  CAS  Google Scholar 

  12. Brown, D. A., Griffith, W. H. & Halliwell, J. V. J. Physiol., Lond. 324, 63P (1982).

  13. Segal, M. & Barker, J. L. J. Neurophysiol. (in the press).

  14. Reuter, H. & Scholz, H. J. Physiol., Lond. 262, 17–47 (1977).

    Article  Google Scholar 

  15. Barker, J. L., McBurney, R. N. & MacDonald, J. F. J. Physiol., Lond. 322, 365–387 (1982).

    Article  CAS  Google Scholar 

  16. Lansman, J. B. Biophys. J. 41, 61a (1983).

    Google Scholar 

  17. Colquhoun, D., Neher, E., Reuter, H. & Stevens, C. F. Nature 294, 752–754 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Yellen, G. Nature 296, 357–359 (1982).

    Article  ADS  CAS  Google Scholar 

  19. Chesnoy-Marchais, D. J. Physiol., Lond. 342, 277–308 (1983).

    Article  CAS  Google Scholar 

  20. Barker, J. L. & Ransom, B. R. J. Physiol., Lond. 280, 331–354 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Barish, M. E. J. Physiol., Lond. 342, 309–325 (1983).

    Article  ADS  CAS  Google Scholar 

  22. Bader, C. R., Bertrand, D. & Schwartz, E. A. J. Physiol., Lond. 331, 253–284 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owen, D., Segal, M. & Barker, J. A Ca-dependent Cl conductance in cultured mouse spinal neurones. Nature 311, 567–570 (1984). https://doi.org/10.1038/311567a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/311567a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing