Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Repeat sequence families derived from mammalian tRNA genes

Abstract

Short interspersed repetitive DNA sequences (SINEs) are the major component of dispersed repetitive DNA in all mammalian genomes (see refs 1–6 for reviews). Most SINEs contain an intragenic RNA polymerase III promoter that initiates transcription at the 5′ end of the repeated DNA sequence7–9 and which has been proposed to facilitate the transposition and amplification of these sequences by an RNA-intermediate mechanism10,11. We have discovered several SINE families in the prosimian Galago crassicaudatus which have promoter regions similar to transfer RNA genes12,13. To determine the relationship between Galago SINEs and mammalian tRNA genes, we have compared their sequences. Here, we demonstrate that the Galago monomer and type II SINE families12 are 68 and 62% homologous, respectively, with a human methionine tRNA gene14. We have extended our analysis to include the rat identifier15 and mouse B2 (ref. 16) families and show that their sequences are closely related to alanine and serine tRNA genes, respectively. Our observations suggest that many mammalian SINE families are amplified tRNA pseudogenes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jelinek, W. R. & Schmid, C. W. A. Rev. Biochem. 51, 813–844 (1982).

    Article  CAS  Google Scholar 

  2. Schmid, C. W. & Jelinek, W. R. Science 216, 1065–1070 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Schmid, C. W. & Shen, C.-K. J. in Molecular Evolutionary Genetics (ed. MacIntyre, R. J.) (Plenum, New York, in the press).

  4. Singer, M. F. Cell 28, 433–434 (1982).

    Article  CAS  Google Scholar 

  5. Singer, M. F. Int. Rev. Cytol. 76, 67–112 (1982).

    Article  CAS  Google Scholar 

  6. Rogers, J. Int. Rev. Cytol. 93, 187–279 (1985).

    Article  CAS  Google Scholar 

  7. Duncan, C. H., Jagadeeswaran, P., Wang, R. R. C. & Weissman, S. M. Gene 13, 185–196 (1981).

    Article  CAS  Google Scholar 

  8. Elder, J. T., Pan, J., Duncan, C. H. & Weissman, S. M. Nucleic Acids Res. 9, 1171–1189 (1981).

    Article  CAS  Google Scholar 

  9. Fuhrman, S. A., Deininger, P. L., LaPorte, P., Friedmann, T. & Geiduschek, E. P. Nucleic Acids Res. 9, 6439–6456 (1981).

    Article  CAS  Google Scholar 

  10. Jagadeeswaran, P., Forget, B. G. & Weissman, S. M. Cell 26, 141–142 (1981).

    Article  CAS  Google Scholar 

  11. Van Arsdell, S. W. et al. Cell 26, 11–17 (1981).

    Article  CAS  Google Scholar 

  12. Daniels, G. R. & Deininger, P. L. Nucleic Acids Res. 11, 7595–7610 (1983).

    Article  CAS  Google Scholar 

  13. Daniels, G. R., Fox, G. M., Loewensteiner, D., Schmid, C. W. & Deininger, P. L. Nucleic Acids Res. 11, 7579–7593 (1983).

    Article  CAS  Google Scholar 

  14. Santos, T. & Zasloff, M. Cell 23, 699–709 (1981).

    Article  CAS  Google Scholar 

  15. Milner, R. J., Bloom, F. E., Lai, C., Lerner, R. A. & Sutcliffe, J. G. Proc. natn. Acad. Sci. U.S.A. 81, 713–717 (1984).

    Article  ADS  CAS  Google Scholar 

  16. Krayev, A. S. et al. Nucleic Acids Res. 10, 7461–7475 (1982).

    Article  CAS  Google Scholar 

  17. Rinehart, F. P., Ritch, T. G., Deininger, P. L. & Schmid, C. W. Biochemistry 20, 3003–3010 (1981).

    Article  CAS  Google Scholar 

  18. Deininger, P. L., Jolly, D. J., Rubin, C. M., Friedmann, T. & Schmid, C. W. J. molec. Biol. 151, 17–33 (1981).

    Article  CAS  Google Scholar 

  19. Grimaldi, G., McCutchan, T. & Singer, M. F. Proc. natn. Acad. Sci. U.S.A. 79, 1497–1500 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Krayev, A. S. et al. Nucleic Acids Res. 8, 1201–1215 (1980).

    Article  CAS  Google Scholar 

  21. Haynes, S. R., Toomey, T. P., Leinward, L. & Jelinek, W. R. Molec. Cell Biol. 1, 573–583 (1981).

    Article  CAS  Google Scholar 

  22. Haynes, S. R. & Jelinek, W. R. Proc. natn. Acad. Sci. U.S.A. 78, 6130–6134 (1981).

    Article  ADS  CAS  Google Scholar 

  23. Ciliberto, G., Raugei, G., Costanzo, F., Dente, L. & Cortese, R. Cell 32, 725–733 (1983).

    Article  CAS  Google Scholar 

  24. Sprinzl, M., Moll, J., Meissner, F. & Hartmann, T. Nucleic Acids Res. 13, r1–r49 (1985).

    Article  Google Scholar 

  25. Singhal, R. P. & Fallis, P. A. M. Prog. Nucleic Acid Res. molec. Biol. 23, 227–273 (1979).

    Article  CAS  Google Scholar 

  26. Ullu, E. & Tschudi, C. Nature 312, 171–172 (1984).

    Article  ADS  CAS  Google Scholar 

  27. Roe, B. A. et al. Biochem. biophys. Res. Commun. 66, 1097–1105 (1975).

    Article  CAS  Google Scholar 

  28. Garber, R. L. & Gage, L. P. Cell 18, 817–828 (1979).

    Article  CAS  Google Scholar 

  29. Rogg, H., Mueller, P. & Staehelin, M. Eur. J. Biochem. 53, 115–127 (1975).

    Article  CAS  Google Scholar 

  30. Payvar, F. & Schimke, R. T. J. biol. Chem. 254, 7636–7642 (1979).

    CAS  PubMed  Google Scholar 

  31. Lawrence, C., McDonnell, D. & Ramsey, W. Nucleic Acids Res. 13, 4239–4252 (1985).

    Article  CAS  Google Scholar 

  32. Doolittle, W. F. & Sapienza, C. Nature 284, 601–603 (1980).

    Article  ADS  CAS  Google Scholar 

  33. Orgel, L. E. & Crick, F. H. C. Nature 284, 604–607 (1980).

    Article  ADS  CAS  Google Scholar 

  34. Jelinek, W. R. et al. Proc. natn. Acad. Sci. U.S.A. 77, 1398–1402 (1980).

    Article  ADS  CAS  Google Scholar 

  35. Sprinzl, M., Vorderwulbecke, T. & Hartmann, T. Nucleic Acids Res. 13, r51–r104 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniels, G., Deininger, P. Repeat sequence families derived from mammalian tRNA genes. Nature 317, 819–822 (1985). https://doi.org/10.1038/317819a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/317819a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing