Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cholinergic neuropil of the striatum observes striosomal boundaries

Abstract

Acetylcholine and dopamine are key neurotransmitters in the extrapyramidal motor system, where they are thought to lie in a ‘functional balance’ brought about by interactions between the terminals of the dopamine-containing nigrostriatal tract and the cholinergic interneurones of the striatum1–3. The precise nature of these interactions is not understood, however, nor is it clear how they influence the functioning of striatal systems containing other neurotransmitters. A new clue to understanding such interplay among transmitter-coded systems in the striatum has come from the finding that many of them, including nigrostriatal afferents, follow a macroscopic ordering in which neural elements are concentrated either in or out of the striatal tissue compartments called striosomes4–8. We here report that the cholinergic neuropil of the striatum is also compartmentalized: fibres expressing immunoreactivity to antibodies raised against choline acetyltransferase (ChAT) are sparse in striosomes and are dense in the extrastriosomal matrix. These findings suggest (1) that the interactions between acetylcholine and other neurotransmitters in the striatum are spatially constrained, (2) that cholinergic modulation of striatal function predomintes in the extrastriosomal matrix, and (3) that extrapyramidal pathways originating in the matrix, including transthalamic pathways to the frontal lobes, may in particular reflect this cholinergic influence. Such a differential organization of striatal cholinergic circuitry could help to account for the selective therapeutic efficacy of anticholinergic drugs in the treatment of extrapyramidal disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barbeau, A. J. med. Ass. Can. 87, 802–807 (1962).

    CAS  Google Scholar 

  2. Duvoisin, R. C. Archs Neurol. 17, 124–136 (1967).

    Article  CAS  Google Scholar 

  3. McGeer, P. L., Boulding, J. E., Gibson, W. C. & Foulkes, R. G. J. Med. Ass. Am. 177, 665–670 (1961).

    Article  CAS  Google Scholar 

  4. Graybiel, A. M. & Ragsdale, C. W. Proc. natn. Acad. Sci. U.S.A. 75, 5723–5726 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Gaybiel, A. M. & Ragsdale, C. W. in Chemical Neuroanatomy (ed. Emson, P. C.) 427–504 (Raven, New York, 1983).

    Google Scholar 

  6. Gerfen, C. R. Nature 311, 461–464 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Graybiel, A. M. in Neuropeptides in Neurologic and Psychiatric Disease (eds Martin, J. B. & Barchas, J. D.) 135–161 (Raven, New York, 1986).

    Google Scholar 

  8. Jimenez-Castellanos, J. & Graybiel, A. M. Neurosci. Abstr. 11, 1249 (1985).

    Google Scholar 

  9. Lehmann, J. & Langer, S. Z. Neuroscience 10, 1105–1120 (1983).

    Article  CAS  Google Scholar 

  10. McGeer, P. L., McGeer, E. G., Fibiger, H. C. & Wickson, V. Brain Res. 35, 308–314 (1971).

    Article  CAS  Google Scholar 

  11. Woolf, N. J. & Butcher, L. L. Brain Res. Bull. 7, 487–507 (1981).

    Article  CAS  Google Scholar 

  12. Mesulam, M.-M., Mufson, E. J., Levey, A. I. & Wainer, B. H. Neuroscience 12, 669–686 (1984).

    Article  CAS  Google Scholar 

  13. Phelps, P. E., Houser, C. R. & Vaughn, J. E. J. comp. Neurol. 238, 286–307 (1985).

    Article  CAS  Google Scholar 

  14. Fibiger, H. C. Brain Res. Rev. 4, 327–388 (1982).

    Article  Google Scholar 

  15. Meininger, C., Rye, D. B. & Wainer, B. H. Neurosci. Abstr. 9, 963 (1983).

    Google Scholar 

  16. Eckenstein, F. & Thoenen, H. EMBO J. 1, 363–368 (1982).

    Article  CAS  Google Scholar 

  17. Eckenstein, F. & Baughman, R. W. Nature 309, 153–155 (1984).

    Article  ADS  CAS  Google Scholar 

  18. Schwarcz, R. et al. Expl Brain Res. 37, 199–216 (1979).

    Article  CAS  Google Scholar 

  19. Phelps, P. E. & Vaughn, J. E. Neurosci. Abstr. 11, 203 (1985).

    Google Scholar 

  20. Alexander, G. E., DeLong, M. R. & Strick, P. L. A. Rev. Neurosci. 9, 357–381 (1986).

    Article  CAS  Google Scholar 

  21. Saper, C. B. & Loewy, A. D. Brain Res. 252, 367–372 (1982).

    Article  CAS  Google Scholar 

  22. Donoghue, J. P. & Herkenham, M. Brain Res. 365, 397–403 (1986).

    Article  CAS  Google Scholar 

  23. Ragsdale, C. W. & Graybiel, A. M. Neurosci. Abstr. 10, 514 (1984).

    Google Scholar 

  24. Graybiel, A. M., Ragsdale, C. W. & Moon Edley, S. Expl Brain Res. 34, 189–195 (1979).

    Article  CAS  Google Scholar 

  25. Graybiel, A. M. Ciba Fdn Symp. 107, 114–149 (1984).

    CAS  Google Scholar 

  26. Weiner, W. J. & Klawans, H. L. in Cholinergic-Monoaminergic Interactions in the Brain (ed. Butcher, L. L.) 335–362 (Academic, New York, 1978).

    Book  Google Scholar 

  27. Parent, A., Bouchard, C. & Smith, Y. Brain Res. 303, 385–390 (1984).

    Article  CAS  Google Scholar 

  28. Ilinsky, I. A., Jouandet, M. L. & Goldman-Rakic, P. S. J. comp. Neurol. 236, 315–330 (1985).

    Article  CAS  Google Scholar 

  29. Selemon, L. D., Goldman-Rakic, P. S. J. Neurosci. 5, 776–794 (1985).

    Article  CAS  Google Scholar 

  30. Jimenez-Castellanos, J. & Graybiel, A. M. Neurosci. Abstr. 12 (in the press).

  31. Marshall, J. F., Joyce, J. N. & Sapp, D. W. Neurosci. Abstr. 11, 207 (1985).

    Google Scholar 

  32. Nastuk, M. A. & Graybiel, A. M. Trends pharmac. Sci. Suppl. 2, 92–93 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graybiel, A., Baughman, R. & Eckenstein, F. Cholinergic neuropil of the striatum observes striosomal boundaries. Nature 323, 625–627 (1986). https://doi.org/10.1038/323625a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323625a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing