Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Glutamate activates multiple single channel conductances in hippocampal neurons

Abstract

There is considerable evidence that glutamate is the principal neurotransmitter that mediates fast excitatory synaptic transmission in the vertebrate central nervous system1–3. This single transmitter seems to activate two or three distinct types of receptors, defined by their affinities for three selective structural analogues of glutamate, NMDA (N-methyl-D-aspartate), quisqualate and kainate1–6. All these agonists increase membrane permeability to monovalent cations7–9, but NMDA also activates a conductance that permits significant calcium influx10,11 and is blocked in a voltage-dependent manner by extracellular magnesium12,13. Fast synaptic excitation seems to be mediated mainly by kainate/quisqualate receptors14–18, although NMDA receptors are sometimes activated 19–21. We have investigated the properties of these conductances using single-channel recording22 in primary cultures of hippocampal neurons, because the hippocampus contains all subtypes of glutamate receptors23,24 and because long-term potentiation of synaptic transmission occurs in this structure25,26. We find that four or more distinct single-channel currents are evoked by applying glutamate to each outside-out membrane patch. These conductances vary in their ionic permeability and in the agonist most effective in causing them to open. Clear transitions between all the conductance levels are observed. Our observations are compatible with the model that all the single channel conductances activated by glutamate reflect the operation of one or two complex molecular entities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Watkins, J. C. & Evans, R. H. A. Rev. Pharmac. Tox. 21, 165–204 (1981).

    Article  CAS  Google Scholar 

  2. McLennan, H. in Glutamate as a Neurotransmitter (eds Di Chiara, G. & Gessa, G. L.) 253–262 (Raven, New York, 1981).

    Google Scholar 

  3. Foster, A. C. & Fagg, G. E. Brain Res. Rev. 7, 103–164 (1984).

    Article  CAS  Google Scholar 

  4. O'Brien, R. J. & Fischbach, G. D. J. Neurosci. 6, 327–3283 (1986).

    Google Scholar 

  5. Ishida, A. T. & Neyton, J. Proc. natn. Acad. Sci. U.S.A. 82, 1837–1841 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Kiskin, N. I., Krishtal, O. A. & Tsyndrenko, A. Ya. Neurosci. Lett. 63, 225–230 (1986).

    Article  CAS  Google Scholar 

  7. MacDonald, J. F. & Wojtowicz, J. M. Can. J. Physiol. Pharmac. 58, 1393–1397 (1980).

    Article  CAS  Google Scholar 

  8. Crunelli, V., Forda, S. & Kelly, J. S. J. Physiol., Lond. 351, 327–342 (1984).

    Article  CAS  Google Scholar 

  9. Hablitz, J. J. & Langmoen, I. A. J. Physiol. Lond. 325, 317–331 (1982).

    Article  CAS  Google Scholar 

  10. Ascher, P. & Nowak, L. J. Physiol., Lond. 377, 43P (1986).

    Google Scholar 

  11. MacDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J. & Barker, J. L. Nature 321, 519–522 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. & Prochiantz, A. Nature 307, 462–465 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Mayer, M. L., Westbrook, G. L. & Guthrie, P. B. Nature 309, 261–263 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Collingridge, G. L., Kehl, S. J. & McLennan, H. J. Physiol., Lond. 334, 19–31 (1983).

    Article  CAS  Google Scholar 

  15. Crunelli, V., Forda, S. & Kelly, J. S. J. Physiol., Lond. 341, 627–640 (1983).

    Article  CAS  Google Scholar 

  16. Jahr, C. E. and Jessell, T. M. J. Neurosci. 5, 2281–2289 (1985).

    Article  CAS  Google Scholar 

  17. Jahr, C. E. and Yoshioka, K. J. Physiol., Lond. 370, 515–530 (1986).

    Article  CAS  Google Scholar 

  18. Nelson, P. G., Pun, R. Y. K. & Westbrook, G. L. J. Physiol., Lond. 372, 169–190 (1986).

    Article  CAS  Google Scholar 

  19. Thomson, A. M. J. Physiol., Lond. 370, 531–549 (1986).

    Article  CAS  Google Scholar 

  20. Coan, E. J. & Collingridge, G. L. Neurosci. Lett. 53, 21–26 (1985).

    Article  CAS  Google Scholar 

  21. Dale, N. & Roberts, A. J. Physiol., Lond. 363, 35–59 (1985).

    Article  CAS  Google Scholar 

  22. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. ges Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  23. Hablitz, J. J. Brain Res. 247, 149–153 (1982).

    Article  CAS  Google Scholar 

  24. Crunelli, V., Forda, S. & Kelly, J. S. J. Physiol., Lond. 351, 327–342 (1984).

    Article  CAS  Google Scholar 

  25. Bliss, T. V. P. & Lomo, T. J. J. Physiol., Lond. 232, 331–356 (1973).

    Article  CAS  Google Scholar 

  26. Bliss, T. V. P. & Gardner-Medwin, A. R. J. Physiol. Lond. 232, 357–374 (1973).

    Article  CAS  Google Scholar 

  27. Labarca, P. & Miller, C. J. Membrane Biol. 61, 31–38 (1981).

    Article  CAS  Google Scholar 

  28. Krouse, M. E., Schneider, G. T. & Gage, P. W. Nature 319, 58–60 (1986).

    Article  ADS  CAS  Google Scholar 

  29. Cull-Candy, S. G. & Ogden, D. C. Proc. R. Soc. B224, 367–373 (1985).

    ADS  Google Scholar 

  30. Ascher, P. & Nowak, L. Proc. int. Un. physiol. Sci. 16, 382 (1986).

    Google Scholar 

  31. Greenamyre, J. T., Olson, J. M. M., Penney, J. B. & Young, A. B. J. Pharmac Exp. Ther. 233, 254–263 (1985).

    CAS  Google Scholar 

  32. Monaghan, D. T., Holets, V. R., Toy, D. W. & Cotman, C. W. Nature 306, 176–179 (1983).

    Article  ADS  CAS  Google Scholar 

  33. Wigstrom, H., Gustaffson, B., Huang, Y. Y. & Abraham, W. C. Acta physiol. scand. 126, 317–319 (1986).

    Article  CAS  Google Scholar 

  34. Malinow, R. & Miller, J. P. Nature 320, 529–530 (1986).

    Article  ADS  CAS  Google Scholar 

  35. Kelso, S. R., Ganong, A. H. & Brown, T. H. Proc. natn. Acad. Sci. U.S.A. 83, 5326–5330 (1986).

    Article  ADS  CAS  Google Scholar 

  36. Kennedy, M. B., Bennett, M. K. & Erondu, N. E. Proc. natn. Acad. Sci. U.S.A. 80, 7357–7361 (1983).

    Article  ADS  CAS  Google Scholar 

  37. Ouimet, C. C., McGuinnes, T. L. & Greengard, P. Proc. natn. Acad. Sci. U.S.A. 81, 5604–5608 (1984).

    Article  ADS  CAS  Google Scholar 

  38. Miller, S. G. & Kennedy, M. B. Cell 44, 861–870 (1986).

    Article  CAS  Google Scholar 

  39. Saitoh, T. & Schwartz, J. H. J. Cell Biol. 100, 835–842 (1985).

    Article  CAS  Google Scholar 

  40. Lai, Y., Nairn, A. C. & Greengard, P. Proc. natn. Acad. Sci. U.S.A. 83, 4253–4257 (1986).

    Article  ADS  CAS  Google Scholar 

  41. Huettner, J. E. & Baughman, R. W. J. Neurosci. 6, 3044–3061 (1986).

    Article  CAS  Google Scholar 

  42. Choi, D. W. & Fischbach, G. D. J. Neurophysiol. 45, 605–620 (1981).

    Article  CAS  Google Scholar 

  43. Yellen, G. Nature 296, 357–359 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jahr, C., Stevens, C. Glutamate activates multiple single channel conductances in hippocampal neurons. Nature 325, 522–525 (1987). https://doi.org/10.1038/325522a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325522a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing