Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Noradrenaline and β-adrenoceptor agonists increase activity of voltage-dependent calcium channels in hippocampal neurons

Abstract

The predominance of unconventional transmitter release sites at noradrenaline-containing synapses and the diffuse projections of noradrenaline-containing fibres originating in locus coeruleus1 have led to speculation that noradrenaline may act as a neuromodu-lator2–6 in the central nervous system. Evidence suggests that it has a modulatory function in the plasticity of the developing nervous system7,8, in controlling behavioural states of an organism3–6, and in learning and memory9–11. Recently, Hopkins and Johnston12 demonstrated that noradrenaline enhances the magnitude, duration and probability of induction of long-term potentiation (LTP) at mossy fibre synapses in the hippocampal formation, and LTP is widely believed to be a cellular substrate for aspects of memory13,14. To investigate the membrane effects of noradrenaline on central neurons, we used a newly developed preparation in which patch-clamp techniques can be applied to exposed adult cortical neurons. We report here that noradrenaline produces an enhancement in the activity of voltage-dependent calcium channels in granule cells of the hippocampal dentate gyrus. This action appears to be mediated by β-adrenoceptors and can be mimicked by cyclic AMP.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. 1. Moore, R. Y. & Bloom, F. E. A. Rev. Neurosci. 2, 113–168 (1979). 2. Woodward, D. J., Moises, H. C., Waterhouse, B. D., Hoffer, B. J. & Freedman, R. Fedn Proc. 38, 2109–2116(1979). 3. Aston–Jones, G. & Bloom, F. E. /. Neurosci. 1, 876–886 (1981). 4. Aston–Jones, G. & Bloom, F. E. J. Neurosci. 1, 887–900 (1981). 5. Kety, S. S. in The Neurosciences Second Study Program, (ed. Schmitt, F. O.) 324–336 (Rockefeller University Press, New York, 1970). 6. Foote, S. L., Bloom, F. E. & Aston–Jones, G. Physiol. Rev. 63, 844–914 (1983). 7. Pettigrew, J. D. & Kasamatsu, T. Nature 271, 761–763 (1978). 8. Bear, M. F. & Singer, W. Nature 320, 172–176 (1986). 9. Crow, T. J. Nature 219, 736–737 (1968). 10. Mason, S. T. Prog. Neurobiol. 16, 263–303 (1981). 11. Ogren, S. O., Archer, T. & Ross, S. B. Neurosci. Lett. 20, 351–356 (1980). 12. Hopkins, W. F. & Johnston, D. Science 226, 350–352 (1984). 13. Andersen, P. & Wigstrom, H. in Neurobiological Basis of Learning and Memory (eds Tsukod, Y. & Aghawoff, B. W.) 17–47 (Wiley, New York, 1980). 14. Bliss, T. V. P. & Dolphin, A. C. Trends Neurosci. S, 289–291(1982). 15. Gray, R. & Johnston, D. /. Neurophysiol. 54, 134–142 (1985). 16. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pfliigers Arch. ges. Physiol. 391, 85–100 (1981). 17. Bean, B. P., Nowycky, M. C. & Tsien, R. W. Nature 307, 371–375 (1984). 18. Nowycky, M. C., Fox, A. P. & Tsien, R. W. Nature 316, 440–443 (1985). 19. Gray, R. & Johnston, D. Biophys. J. 49, 432a (1986). 20. Bloom, F. E. Rev. Physiol. Biochem. Pharmac. 74, 1–103 (1975). 21. Segal, M., Greenberger, V. & Hofstein, R. Brain Res. 213, 351–364 (1981). 22. Haas, H. & Konnerth, A. Nature 302, 432–435 (1983). 23. Madison, D. V. & Nicoll, R. A. Nature 299, 636–638 (1982). 24. Lynch, G., Larson, J., Kelso, S., Barrionuevo, G. & Schottler, F. Nature 305,719–721 (1983). 25. Dunwiddie, T. V. & Lynch, G. Brain Res. 169, 103–110 (1979). 26. Bliss, T. V. P., Goddard, G. V. & Riives, M. / Physiol., Lond. 334, 475–491 (1983). 27. Lynch, M. A. & Bliss, T. V. P. Neuropharmacology 25, 493–498 (1986).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, R., Johnston, D. Noradrenaline and β-adrenoceptor agonists increase activity of voltage-dependent calcium channels in hippocampal neurons. Nature 327, 620–622 (1987). https://doi.org/10.1038/327620a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/327620a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing