Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dissecting the catalytic triad of a serine protease

Abstract

Serine proteases are present in virtually all organisms and function both inside and outside the cell1; they exist as two families, the 'trypsin-like' and the 'subtilisin-like', that have independently evolved a similar catalytic device2 characterized by the Ser, His, Asp triad, an oxyanion binding site, and possibly other determinants that stabilize the transition state (Fig. l) 2–4. For Bacillus amyloliquefaciens subtilisin, these functional elements impart a total rate enhancement of at least 109 to 1010 times the non-enzymatic hydrolysis of amide bonds. We have examined the catalytic importance and interplay between residues within the catalytic triad by individual or multiple replacement with alanine(s), using site-directed mutagenesis5,6 of the cloned B. amyloliquefaciens subtilisin gene7. Alanine substitutions were chosen to minimize unfavourable steric contacts and to avoid imposing new charge interactions or hydrogen bonds from the substituted side chains. In contrast to the effect of mutations in residues involved in substrate binding8–10, the mutations in the catalytic triad greatly reduce the turnover number and cause only minor effects on the Michaelis constant. Kinetic analyses of the multiple mutants demonstrate that the residues within the triad interact synergistically to accelerate amide bond hydrolysis by a factor of 2×l06.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stroud, R. M. Scient. Am. 131, 74–88 (1974).

    Article  Google Scholar 

  2. Kraut, J. A. Rev. Biochem. 46, 331–358 (1977).

    Article  CAS  Google Scholar 

  3. Fink, A. L. in Enzyme Mechanisms (eds Page, M. I. & Williams, A.) 159–177 (Roy. Soc. Chem. 1987).

    Google Scholar 

  4. Kossiakoff, A. A. in Biological Macromolecules and Assemblies Vol. 3 (eds Jurnak, F. A. & McPherson, A.) 370–412 (1987).

    Google Scholar 

  5. Zoller, M. J. & Smith, M. Nucleic Acids Res. 10, 6487–6500 (1982).

    Article  CAS  Google Scholar 

  6. Carter, P., Bedouelle, H. & Winter, G. Nucleic Acids Res. 13, 4431–4443 (1986).

    Article  Google Scholar 

  7. Wells, J. A., Ferrari, E., Henner, D. J., Estell, D. A. & Chen, E. Y. Nucleic Acids Res. 11, 7911–7925 (1983).

    Article  CAS  Google Scholar 

  8. Estell, D. A. et al. Science 233, 659–663 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Wells, J. A., Powers, D. B., Bott, R. R., Graycar, T. P. & Estell, D. A. Proc. natn. Acad. Sci. U.S.A. 84, 1219–1223 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Wells, J. A., Cunningham, B. C., Graycar, T. P. & Estell, D. A. Proc. natn. Acad. Sci. U.S.A. 84, 5167–5171 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Power, S. D. Adams, R. M. & Wells, J. A. Proc. natn. Acad. Sci. U.S.A. 83, 3096–3100 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Carter, P. & Wells, J. A. Science 237, 394–399 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Wells, J. A. & Powers, D. B. J. biol. Chem. 261, 6564–6570 (1986).

    CAS  PubMed  Google Scholar 

  14. Wells, J. A., Cunningham, B. C., Graycar, T. P. & Estell, D. A. Phil. Trans. R. Soc. A 317, 415–423 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Gutfreund, H. & Sturtevant, J. M. Biochem. J. 63, 656–661 (1956).

    Article  CAS  Google Scholar 

  16. Craik, C. S., Roczniak, S., Largman, C. & Rutter, W. J. Science 237, 909–913 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Sprang, S. et al. Science 237, 905–909 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Tramontano, A., Janda, K. D. & Lerner, R. A. Science 234, 1566–1570 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Pollack, S. J., Jacobs, J. W. & Schultz, P. G. Science 234, 1570–1573 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Napper, A. D., Benkovic, S. J., Tramontano, A. & Lerner, R. A. Science 237, 1041–1043 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Bryan, P., Pantoliano, M. W., Quill, S. G., Hsiao, H.-Y. & Poulos, T. Proc. natn. Acad. Sci. U.S.A. 83, 3743–3745 (1986).

    Article  ADS  CAS  Google Scholar 

  22. Morihara, K., Oka, T. & Tsuzuki, H. Arch. Biochem. Biophys. 138, 515–525 (1970).

    Article  CAS  Google Scholar 

  23. Morihara, K., Oka, T. & Tsuzuki, H. Biochem. biophys. Res. Commun. 35, 210–214 (1969).

    Article  CAS  Google Scholar 

  24. Robertus, J. D., Kraut, J., Alden, R. A. & Birktoft, J. J. Biochemistry 11, 4293–4303 (1972).

    Article  CAS  Google Scholar 

  25. Wells, J. A., Vasser, M. & Powers, D. B. Gene 34, 315–323 (1985).

    Article  CAS  Google Scholar 

  26. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  27. Yang, M. Y., Ferrari, E. & Henner, D. J. J. Bact. 160, 15–21 (1984).

    CAS  PubMed  Google Scholar 

  28. DelMar, E. G., Langman, C., Brodrick, J.W. & Goekas, M.C. Analyt. Biochem. 99, 316–320 (1979).

    Article  CAS  Google Scholar 

  29. Matsubara, H., Kasper, C. B., Brown, D. M. & Smith, E. L. J. biol. Chem. 240, 1125–1130 (1965).

    CAS  PubMed  Google Scholar 

  30. Schechter, I. & Berger, A. Biochem. biophys. Res. Commun. 27, 157–162 (1967).

    Article  CAS  Google Scholar 

  31. Robertus, J. D. et al. Biochemistry 11, 2439–2449 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carter, P., Wells, J. Dissecting the catalytic triad of a serine protease. Nature 332, 564–568 (1988). https://doi.org/10.1038/332564a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/332564a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing