Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate

Abstract

The generation of second messengers from the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PtdInsP2) by phospho-inositidase C has been implicated in the mediation of cellular responses to a variety of growth factors and oncogene products1–4. The first step in the production of PtdInsP2 from phosphatidyl-inositol (PtdIns) is catalysed by PtdIns kinase. A PtdIns kinase activity has been found to associate specifically with several oncogene products, as well as with the platelet-derived growth factor (PDGF) receptor5–8. We have previously identified two biochemically distinct PtdIns kinases in fibroblasts, and have found that only one of these, designated type I, specifically associates with activated tyrosine kinases7. We have now characterized the site on the inositol ring phosphorylated by type I PtdIns kinase, and find that this kinase specifically phosphorylates the D-3 ring position to generate a novel phospholipid, phosphatidylinositol-3-phosphate (PtdIns(3)P). In contrast, the main PtdIns kinase in fibroblasts, designated type II, specifically phosphorylates the D-4 position to produce phosphatidylinositol-4-phosphate (PtdIns(4)P), previously considered to be the only form of PtdInsP (ref. 9). We have also tentatively identified PtdIns(3)P as a minor component of total PtdInsP in intact fibroblasts. We propose that type I Ptdlns kinase is responsible for the generation of PtdIns(3)P in intact cells, and that this novel phosphoinositide could be important in the transduction of mitogenic and oncogenic signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Whitman, M., Fleischman, L., Chahwala, S. B., Cantley, L. & Rosoff, P. in Pl Turnover and Receptor Function (ed. Putney, J.) 197–217 (Liss, New York, 1986).

    Google Scholar 

  2. Berridge, M. Biochim. biophys. Acta 907, 33–45 (1987).

    CAS  PubMed  Google Scholar 

  3. Downes, C. P. & Michell, R. H. in Molecular Aspects of Cellular Regulation Vol. 4 (eds Cohen, P. & Houslay, M. D.) 3–56 (Elsevier, Amsterdam, 1985).

    Google Scholar 

  4. Macara, I. G. Am. J. Physiol. 248, C3–C11 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Whitman, M., Kaplan, D. R., Schaffhausen, B. S., Cantley, L. & Roberts, T. Nature 315, 239–242 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Kaplan, D. R. et al. Proc. natn. Acad. Sci. U.S.A. 83, 3,624–3,628 (1986).

    Article  CAS  Google Scholar 

  7. Whitman, M., Kaplan, D. R., Roberts, T. M. & Cantley, L. C. Biochem. J. 247, 165–174 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kaplan, D. R. et al. Cell 50, 1021–1029 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Chang, M. & Ballou, C. E. Biochem. biophys. Res. Commun. 26, 199–205 (1967).

    Article  CAS  PubMed  Google Scholar 

  10. Brown, D. M. & Stewart, J. C. Biochem. biophys. Acta 125, 413–421 (1966).

    Article  CAS  PubMed  Google Scholar 

  11. Grado, C. & Ballou, C. E. J. biol. Chem. 236, 54–60 (1961).

    CAS  PubMed  Google Scholar 

  12. Irvine, R. F., Letcher, A. J., Lander, D. J. & Downes, C. P. Biochem. J. 223, 237–243 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Prottey, C. Salway, J. G. & Hawthorne, J. N. Biochim. biophys. Acta 164, 238–251 (1968).

    Article  CAS  PubMed  Google Scholar 

  14. Endemann, G., Dunn, S. & Cantley, L. Biochemistry 26, 6845–6851 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Hawkins, P. T., Stephens, L. & Downes, C. P. Biochem. J. 238, 507–516 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Harden, T. K., Stephens, L., Hawkins, P. T. & Downes, C. P. J. biol. Chem. 262, 9059–9061 (1987).

    Google Scholar 

  17. Hers, L. & Hue, S. A. Rev. Biochem. 52, 617–654 (1983).

    Article  CAS  Google Scholar 

  18. Hawkins, P. T., Stephens, L. & Downes, C. P. Biochem. J. 238, 507–516 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stephens, L. R. et al. Biochem. J. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitman, M., Downes, C., Keeler, M. et al. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 332, 644–646 (1988). https://doi.org/10.1038/332644a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/332644a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing