Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic β cell via two distinct site-specific endopeptidases

Abstract

Insulin is produced from an inactive precursor, proinsulin, through initial endoproteolytic cleavage at sites marked by pairs of basic amino-acid residues1,2. We report here that lysates of insulin secretory granules contain two distinct Ca-dependent acidic endoproteases; one (type I) cleaving exclusively on the C-terminal side of Arg 31.Arg 32 (B-chain/C-peptide junction), the other (type II) preferentially on the C-terminal side of Lys 64.Arg 65 of proinsulin (C-peptide/A-chain junction). The Ca and pH requirements of these proteinases suggested that the type-II pro-teinase would be active in the Golgi apparatus and the secretory granule, whereas type-I activity would be compatible only with the intragranular environment. Kinetic analyses of (pro)insulin conversion intermediates in [35S]methionine-pulsed rat islets support this supposition. Our results suggest a simple mechanism whereby different dibasic sites can be cleaved in different cellular compartments. In conjunction with the regulation of the ionic composition of such compartments and the operation of post-Golgi segregation, our results also suggest how proteolytic conversion of diverse proproteins destined for different cellular sites can occur differentially and in a regulated manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Docherty, K. D. & Steiner, D. F. A. Rev. Physiol. 44, 625–638 (1982).

    Article  CAS  Google Scholar 

  2. Loh, Y. P., Brownstein, M. J. & Gainer, H. A. Rev. Neurosci. 7, 189–222 (1984).

    Article  CAS  Google Scholar 

  3. Davidson, H. W., Peshavaria, M. & Hutton, J. C. Biochem. J. 246, 279–286 (1987).

    Article  CAS  Google Scholar 

  4. Hutton, J. C., Davidson, H. W. & Peshavaria, M. Biochem. J. 244, 457–464 (1987).

    Article  CAS  Google Scholar 

  5. Hutton, J. C. Biochem. J. 204, 171–178 (1982).

    Article  CAS  Google Scholar 

  6. Hutton, J. C., Penn, E. J. & Peshavaria, M. Biochem. J. 210, 297–305 (1983).

    Article  CAS  Google Scholar 

  7. Orci, L. et al. Cell 49, 865–868 (1987).

    Article  CAS  Google Scholar 

  8. Herman, L., Sato, T. & Hales, C. N. J. Ultrastruct. Res. 42, 298–311 (1973).

    Article  CAS  Google Scholar 

  9. Davidson, H. W. & Hutton, J. C. Biochem. J. 245, 575–582 (1987).

    Article  CAS  Google Scholar 

  10. Given, B. D. et al. J. clin. Invest. 76, 1398–1405 (1985).

    Article  CAS  Google Scholar 

  11. Orci, L. Diabetologia 28, 528–546 (1985).

    Article  CAS  Google Scholar 

  12. Hutton, J. C. & Peshavaria, M. Biochem. J. 204, 161–170 (1982).

    Article  CAS  Google Scholar 

  13. Rhodes, C. J., Lucas, C. A., Mutkoski, R. L., Orci, L. & Halban, P. A. J. biol. Chem. 262, 10712–10717 (1987).

    CAS  PubMed  Google Scholar 

  14. Formby, B., Capito, K., Egeberg, J. & Hedeskov, C. J. Am. J. Physiol 230, 441–448 (1976).

    CAS  PubMed  Google Scholar 

  15. Howell, S. L. & Tyhurst, M. J. Cell Sci. 21, 415–422 (1976).

    CAS  PubMed  Google Scholar 

  16. Grant, P. T., Coombs, T. L. & Frank, B. H. Biochem. J. 126, 433–440 (1972).

    Article  CAS  Google Scholar 

  17. Kohnert, K-D., Hahn, H-J., Gylfe, E., Borg, H. & Hellman, B. Molec. cell. Endocrinol. 16, 205–220 (1979).

    Article  CAS  Google Scholar 

  18. Hutton, J. C., Davidson, H. W., Grimaldi, K. A. & Peshavaria, M. Biochem. J. 244, 449–456 (1987).

    Article  CAS  Google Scholar 

  19. Grimaldi, K. A., Siddle, K. & Hutton, J. C. Biochem. J. 245, 567–573 (1987).

    Article  CAS  Google Scholar 

  20. Howell, S. L., Tyhurst, M., Duvefelt, H., Andersson, A. & Hellerström, C. Cell Tissue Res. 188, 107–118 (1978).

    Article  CAS  Google Scholar 

  21. Nagamatsu, S., Bolaffi, J. L. & Grodsky, G. M. Endocrinology 120, 1225–1231 (1987).

    Article  CAS  Google Scholar 

  22. Rhodes, C. J. & Halban, P. A. J. Cell Biol. 105, 145–153 (1987).

    Article  CAS  Google Scholar 

  23. Steiner, D. F. et al. Proc. natn. Acad. Sci. U.S.A. 84, 6184–6188 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Moore, H-P., Walker, M. D., Lee, F. & Kelly, R. B. Cell 35, 531–538 (1983).

    Article  CAS  Google Scholar 

  25. Thim, L. et al. Proc. natn. Acad. Sci. U.S.A. 83, 6766–6770 (1986).

    Article  ADS  CAS  Google Scholar 

  26. Brennan, S. O. & Peach, R. J. FEBS Lett. 229, 167–190 (1988).

    Article  CAS  Google Scholar 

  27. Storer, A. C. & Cornish-Bowden, A. Biochem. J. 159, 1–5 (1976).

    Article  CAS  Google Scholar 

  28. Lacy, P. E. & Kostianovsky, M. Diabetes 16, 35–39 (1967).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidson, H., Rhodes, C. & Hutton, J. Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic β cell via two distinct site-specific endopeptidases. Nature 333, 93–96 (1988). https://doi.org/10.1038/333093a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/333093a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing