Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Acetylcholine inhibits identified interneurons in the cat lateral geniculate nucleus

Abstract

The transmission of visual information from retina to cortex through the dorsal lateral geniculate nucleus (LGNd) is controlled by non-retinal inputs1,2. Enhanced visually evoked responses in cat LGNd relay cells during periods of increased alertness3 have been attributed in large part to increased rate of acetylcholine (ACh) release by fibres ascending from the brainstem reticular formation4–7. ACh can modulate geniculate visual responses in vivo5–8, but comparatively little is known about the underlying ionic mechanisms of these cholinergic actions. Although direct excitation of LGNd relay neurons has been shown in vitro9, the situation is complicated because cholinergic axons form numerous and complex synapses not only with relay cells, but also with inhibitory interneurons10, and electrical activation of the brainstem cholinergic neurons reduces inhibitory postsynaptic potentials in the LGNd11–13. We report here that morphologically characterized interneurons in the cat LGNd possess distinctive electrophysiological properties in comparison with those of relay cells and are inhibited by ACh through a muscarinic receptor-mediated increase in potassium conductance. Together the direct excitation of relay cells and inhibition of intrageniculate interneurons allow the ascending cholinergic system to exert a powerful facilitatory influence over the transfer of visual information to the cerebral cortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Singer, W. Physiol. Rev. 57, 386–420 (1977).

    Article  CAS  Google Scholar 

  2. Sherman, S. M. & Koch, C. Expl. Brain Res. 63, 1–20 (1986).

    Article  CAS  Google Scholar 

  3. Livingstone, M. S. & Hubel, D. H. Nature 291, 554–561 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Phillis, J. W., Tebécis, A. K. & York, D. H. J. Physiol. 192, 695–713 (1967).

    Article  CAS  Google Scholar 

  5. Sillito, A. M., Kemp, J. A. & Berardi, N. Brain Res. 280, 299–307 (1983).

    Article  CAS  Google Scholar 

  6. Eysel, U. T., Pape, H.-C. & Van Schayck, R. J. Physiol. 370, 233–254 (1986).

    Article  CAS  Google Scholar 

  7. Francesconi, W., Müller, C. M. & Singer, W. J. Neurophysiol. (in the press).

  8. Eysel, U. T., Pape, H.-C. & Van Schayck, R. J. Physiol. 388, 199–212 (1987).

    Article  CAS  Google Scholar 

  9. McCormick, D. A. & Prince, D. A. J. Physiol. 392, 147–165 (1987).

    Article  CAS  Google Scholar 

  10. De Lima, A. D., Montero, V. M. & Singer, W. Expl. Brain Res. 59, 206–212 (1985).

    Article  CAS  Google Scholar 

  11. Singer, W. & Dräger, U. Brain Res. 41, 214–220 (1972).

    Article  CAS  Google Scholar 

  12. Singer, W. Brain Res. 61, 35–54 (1973).

    Article  CAS  Google Scholar 

  13. Ahlsén, G., Lindström, S. & Lo, F.-S. J. Physiol. 347, 593–609 (1984).

    Article  Google Scholar 

  14. Jahnsen, H. & Llinás, R. J. Physiol. 349, 205–226 (1984).

    Article  CAS  Google Scholar 

  15. Jahnsen, H. & Llinás, R. J. Physiol. 349, 227–247 (1984).

    Article  CAS  Google Scholar 

  16. Crunelli, V., Haby, M., Jassik-Gerschenfeld, D., Leresche, N. & Pirchio, M. J. Physiol. 399, 153–176 (1988).

    Article  CAS  Google Scholar 

  17. McCormick, D. A. & Prince, D. A. Nature 319, 402–405 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Egan, T. M. & North, R. A. Nature 319, 405–407 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Guillery, R. W. J. comp. Neurol. 128, 21–50 (1966).

    Article  CAS  Google Scholar 

  20. Hamos, J. E., Van Horn, S. C., Raczkowski, D., Uhlrich, D. J. & Sherman, S. M. Nature 317, 618–621 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Montero, V. M. J. comp. Neurol. 254, 228–245 (1986).

    Article  CAS  Google Scholar 

  22. Pape, H.-C. & Eysel, U. T. Brain Res. 440, 79–86 (1988).

    Article  CAS  Google Scholar 

  23. Godfraind, J. M. Br. J. Pharmac. 63, 295–302 (1978).

    Article  CAS  Google Scholar 

  24. Steriade, M. & Deschênes, M. Brain Res. Rev. 8, 1–63 (1984).

    Article  Google Scholar 

  25. Rye, D. B., Saper, C. B., Lee, H. J. & Wainer, B. H. J. comp. Neurol 259, 483–528 (1987).

    Article  CAS  Google Scholar 

  26. De Lima, A. D. & Singer, W. J. comp. Neurol. 259, 92–121 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCormick, D., Pape, HC. Acetylcholine inhibits identified interneurons in the cat lateral geniculate nucleus. Nature 334, 246–248 (1988). https://doi.org/10.1038/334246a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334246a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing