Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors

Abstract

AFTER lesions in the differentiated central nervous system (CNS) of higher vertebrates, interrupted fibre tracts do not regrow and elongate by more than an initial sprout of 1 mm (refs 1–3). Transplantations of pieces of peripheral nerves into various parts of the CNS demonstrate the widespread capability of CNS neurons to regenerate lesioned axons over long distances in a peripheral nerve environment (for example, see refs 2 and 3). CNS white matter4–6, cultured oligodendrocytes (the myelin-producing cells of the CNS), and CNS myelin itself, are strong inhibitors of neuron growth in culture7, a property associated with defined myelin membrane proteins of relative molecular mass (Mr) 35,000 (NI-35) and 250,000 (NI-250)8. We have now intracerebrally applied the monoclonal antibody IN-1, which neutralizes the inhibitory effect of both these proteins9, to young rats by implanting antibody-producing tumours. In 2–6-week-old rats we made complete transections of the cortico-spinal tract, a major fibre tract of the spinal cord, the axons of which originate in the motor and sensory neocortex10,11. Previous studies have shown a complete absence of cortico-spinal tract regeneration after the first postnatal week in rats12, and in adult hamsters and cats13,14. In IN-1-treated rats, massive sprouting occurred at the lesion site, and fine axons and fascicles could be observed up to 7–11 mm caudal to the lesion within 2–3 weeks. In control rats, a similar sprouting reaction occurred, but the maximal distance of elongation rarely exceeded 1 mm. These results demonstrate the capacity for CNS axons to regenerate and elongate within differentiated CNS tissue after the neutralization of myelin-associated neurite growth inhibitors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Ramon y Cajal, S. Degeneration and Regeneration of the Nervous System (Hafner, New York, 1959).

    Google Scholar 

  2. David, S. & Aguayo, A. J. Science 214, 931–933 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Vidal-Sanz, M., Bray, G. M, Villegas-Pérez, M. P., Thanos, S. & Aguayo, A. J. J. Neurosci. 7, 2894–2909 (1987).

    Article  CAS  Google Scholar 

  4. Schwab, M. E. & Thoenen, H. J. Neurosci. 5, 2415–2423 (1985).

    Article  CAS  Google Scholar 

  5. Carbonetto, S., Evans, D. & Cochard, P. J. Neurosci. 7, 610–620 (1987).

    Article  CAS  Google Scholar 

  6. Savio, T. & Schwab, M. E. J. Neurosci. 9, 1126–1133 (1989).

    Article  CAS  Google Scholar 

  7. Schwab, M. E. & Caroni, P. J. Neurosci. 8, 2381–2393 (1988).

    Article  CAS  Google Scholar 

  8. Caroni, P. & Schwab, M. E. J. Cell Biol. 106, 1281–1288 (1988).

    Article  CAS  Google Scholar 

  9. Caroni, P. & Schwab, M. E. Neuron 1, 85–96 (1988).

    Article  CAS  Google Scholar 

  10. Casale, E., Light, A. R. & Rustioni, A. J. comp. Neurol. 278, 275–286 (1988).

    Article  CAS  Google Scholar 

  11. Joosten, E. A. J., Gribnau, A. A. M. & Dederen, J. W. C. Devl Brain Res. 36, 121–130 (1987).

    Article  Google Scholar 

  12. Bernstein, D. R. & Stelzner, D. J. J. comp. Neurol. 221, 382–400 (1983).

    Article  CAS  Google Scholar 

  13. Kalil, K. & Reh, T. J. comp. Neurol. 211, 265–275 (1982).

    Article  CAS  Google Scholar 

  14. Tolbert, D. L. & Der, T. J. comp. Neurol. 260, 299–311 (1987).

    Article  CAS  Google Scholar 

  15. Schreyer, D. J. & Jones, E. G. Devl Brain Res. 38, 103–119 (1988).

    Article  Google Scholar 

  16. Nornes, H, Björklund, A. & Stenevi, U. Cell Tissue Res. 230, 15–35 (1983).

    Article  CAS  Google Scholar 

  17. Foster, G. A. et al., Expl Brain Res. 60, 427–444 (1985).

    Article  CAS  Google Scholar 

  18. Björklund, A. Segal, M. & Stenevi, U. Brain Res. 170, 409–426 (1979).

    Article  Google Scholar 

  19. Semenenko, F. M., Bramwell, S., Sidebottom, E. & Cuello, A. C. Histochemistry 83, 405–408 (1985).

    Article  CAS  Google Scholar 

  20. Borgens, R. B., Blight, A. R. & Murphy, D. J. J. comp. Neurol. 250, 157–167 (1986).

    Article  CAS  Google Scholar 

  21. Mesulam, M.-M. J. Histochem. Cytochem. 26, 106–117 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnell, L., Schwab, M. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343, 269–272 (1990). https://doi.org/10.1038/343269a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/343269a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing