Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A conserved docking motif in MAP kinases common to substrates, activators and regulators

Abstract

Mitogen-activated protein kinases (MAPKs) are specifically phosphorylated and activated by the MAPK kinases, phosphorylate various targets such as MAPK-activated protein kinases and transcription factors, and are inactivated by specific phosphatases. Recently, docking interactions via the non-catalytic regions of MAPKs have been suggested to be important in regulating these reactions. Here we identify docking sites in MAPKs and in MAPK-interacting enzymes. A docking domain in extracellular-signal-regulated kinase (ERK), a MAPK, serves as a common site for binding to the MAPK kinase MEK1, the MAPK-activated protein kinase MNK1 and the MAPK phosphatase MKP3. Two aspartic acids in this domain are essential for docking, one of which is mutated in the sevenmaker mutant of Drosophila ERK/Rolled. A corresponding domain in the MAPKs p38 and JNK/SAPK also serves as a common docking site for their MEKs, MAPK-activated protein kinases and MKPs. These docking interactions increase the efficiency of the enzymatic reactions. These findings reveal a hitherto unidentified docking motif in MAPKs that is used in common for recognition of their activators, substrates and regulators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The CD domains in the three-dimensional structures of ERK2 and p38α.
Figure 2: Docking of ERK2 to MEK1, MKP3 and MNK1.
Figure 3: The direct binding of the CD domain to MAPK-docking sites.
Figure 4: Docking interactions increase the efficiency of enzymatic reactions.
Figure 5: Identification of the CD domain in p38 and JNK.
Figure 6: The CD domain of the MAPK family.

Similar content being viewed by others

References

  1. Ahn, N. G., Seger, R. & Krebs, E. G. The mitogen-activated protein kinase activator. Curr. Opin. Cell Biol. 4, 992–999 (1992).

    Article  CAS  Google Scholar 

  2. Nishida, E. & Gotoh, Y. The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem. Sci. 18, 128–131 ( 1993).

    Article  CAS  Google Scholar 

  3. Cobb, M. H. & Goldsmith, E. J. How MAP kinases are regulated . J. Biol. Chem. 270, 14843– 14846 (1995).

    Article  CAS  Google Scholar 

  4. Sturgill, T. W. & Wu, J. Recent progress in characterization of protein kinase cascades for phosphorylation of ribosomal protein S6. Biochim. Biophys. Acta 1092, 350–357 (1991).

    Article  CAS  Google Scholar 

  5. Davis, R. J. MAPKs: new JNK expands the group. Trends Biochem. Sci. 19, 470–473 (1994).

    Article  CAS  Google Scholar 

  6. Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).

    Article  CAS  Google Scholar 

  7. Kyriakis, J. M. & Avruch, J. Protein kinase cascades activated by stress and inflammation. BioEssays 18, 567–577 (1996).

    Article  CAS  Google Scholar 

  8. Treisman, R. Regulation of transcription by MAP kinase cascades. Curr. Opin. Cell Biol. 8, 205–215 ( 1996).

    Article  CAS  Google Scholar 

  9. Bardwell, L. & Thorner, J. A conserved motif at the amino termini of MEKs might mediate high-affinity interaction with the cognate MAPKs. Trends Biochem. Sci. 21, 373–374 (1996).

    Article  CAS  Google Scholar 

  10. Kallunki, T., Deng, T., Hibi, M. & Karin, M. c-Jun recruits JNK to phosphorylate dimerization partners via specific docking interactions. Cell 87, 929–939 ( 1996).

    Article  CAS  Google Scholar 

  11. Fukuda, M., Gotoh, Y. & Nishida, E. Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase . EMBO J. 16, 1901–1908 (1997).

    Article  CAS  Google Scholar 

  12. Pulido, R., Zuniga, A. & Ullrich, A. PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif. EMBO J. 17, 7337–7350 (1998).

    Article  CAS  Google Scholar 

  13. Xia, Y. & Karin, M. JNKK1 organizes a MAP kinase module through specific and sequential interactions with upstream and downstream components mediated by its amino-terminal extension. Genes Dev. 12, 3369–3381 ( 1998).

    Article  CAS  Google Scholar 

  14. Yang, S. H., Whitmarsh, A. J., Davis, R. J. & Sharrocks, A. D. Differential targeting of MAP kinases to the ETS-domain transcription factor Elk-1. EMBO J. 17, 1740– 1749 (1998).

    Article  CAS  Google Scholar 

  15. Gavin, A. C. & Nebreda, A. R. A MAP kinase docking site is required for phosphorylation and activation of p90RSK/MAPKAPK-1. Curr. Biol. 9, 281–284 ( 1999).

    Article  CAS  Google Scholar 

  16. Holland, P. M. & Cooper, J. A. Protein modification: docking sites for kinases. Curr. Biol. 9, 329–331 (1999).

    Article  Google Scholar 

  17. Jacobs, D., Glossip, D., Xing, H., Muslin, A. J. & Kornfeld, K. Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev. 13, 163–175 ( 1999).

    Article  CAS  Google Scholar 

  18. Smith, J. A., Poteet-Smith, C. E., Malarkey, K. & Sturgill, T. W. Identification of an extracellular signal-regulated kinase (ERK) docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo . J. Biol. Chem. 274, 2893– 2898 (1999).

    Article  CAS  Google Scholar 

  19. Yang, S. H., Galanis, A. & Sharrocks, A. D. Targeting of p38 mitogen-activated protein kinases to MEF2 transcription factors. Mol. Cell. Biol. 19, 4028–4038 (1999).

    Article  CAS  Google Scholar 

  20. Zuniga, A., Torres, J., Ubeda, J. & Pulido, R. Interaction of mitogen-activated protein kinases with the kinase interaction motif of the tyrosine phosphatase PTP-SL provides substrate specificity and retains ERK2 in the cytoplasm. J. Biol. Chem. 274, 21900 –21907 (1999).

    Article  CAS  Google Scholar 

  21. Brunner, D. et al. A gain-of-function mutation in Drosophila MAP kinase activates multiple receptor tyrosine kinase signaling pathways. Cell 76, 875–888 (1994).

    Article  CAS  Google Scholar 

  22. Camps, M. et al. Catalytic activation of the phosphatase MKP3 by ERK2 mitogen-activated protein kinase. Science 280, 1262– 1265 (1998).

    Article  CAS  Google Scholar 

  23. Zhang, F., Strand, A., Robbins, D., Cobb, M. H. & Goldsmith, E. J. Atomic structure of the MAP kinase ERK2 at 2.3 Å resolution. Nature 367, 704– 711 (1994).

    Article  CAS  Google Scholar 

  24. Fukunaga, R. & Hunter, T. MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J. 16, 1921 –1933 (1997).

    Article  CAS  Google Scholar 

  25. Waskiewicz, A. J., Flynn, A., Proud, C. G. & Cooper, J. A. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J. 16, 1909–1920 ( 1997).

    Article  CAS  Google Scholar 

  26. Duesbery, N. S. et al. Proteolytic inactivation of MAP-kinase-kinase by Anthrax Lethal Factor. Science 280, 734– 737 (1998).

    Article  CAS  Google Scholar 

  27. Bott, C. M., Thorneycroft, S. G. & Marshall, C. J. The sevenmaker gain-of-function mutation in p42 MAP kinase leads to enhanced signalling and reduced sensitivity to dual specificity phosphatase action. FEBS Lett. 352, 201– 205 (1994).

    Article  CAS  Google Scholar 

  28. Chu, Y., Solski, P. A., Khosravi-Far, R., Der, C. J. & Kelly, K. The mitogen-activated protein kinase phosphatases PAC1, MKP-1, and MKP-2 have unique substrate specificities and reduced activity in vivo toward the ERK2 sevenmaker mutation. J. Biol. Chem. 271, 6497–6501 (1996).

    Article  CAS  Google Scholar 

  29. Karim, F. D. & Rubin, G. M. PTP-ER, a novel tyrosine phosphatase, functions downstream of Ras1 to downregulate MAP kinase during Drosophila eye development. Mol. Cell 3, 741– 750 (1999).

    Article  CAS  Google Scholar 

  30. Wilson, K. P. et al. Crystal structure of p38 mitogen-activated protein kinase . J. Biol. Chem. 271, 27696– 27700 (1996).

    Article  CAS  Google Scholar 

  31. Wang, Z. et al. The structure of mitogen-activated protein kinase p38 at 2.1-Å resolution. Proc. Natl Acad. Sci. USA 94, 2327–2332 (1997).

    Article  CAS  Google Scholar 

  32. Xie, X. et al. Crystal structure of JNK3: a kinase implicated in neuronal apoptosis . Structure 6, 983–991 (1998).

    Article  CAS  Google Scholar 

  33. Moriguchi, T. et al. Purification and identification of a major activator for p38 from osmotically shocked cells. Activation of mitogen-activated protein kinase kinase 6 by osmotic shock, tumor necrosis factor-alpha, and H2O 2 . J. Biol. Chem. 271, 26981– 26988 (1996).

    Article  CAS  Google Scholar 

  34. Tanoue, T., Moriguchi, T. & Nishida, E. Molecular cloning and characterization of a novel dual specificity phosphatase, MKP-5. J. Biol. Chem. 274, 19949–19956 (1999).

    Article  CAS  Google Scholar 

  35. Khokhlatchev, A.Y. et al.. Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93, 605– 615 (1998).

    Article  CAS  Google Scholar 

  36. Brunet, A. & Pouyssegur, J. Identification of MAP kinase domains by redirecting stress signals into growth factor responses. Science 272, 1652–1655 ( 1998).

    Article  Google Scholar 

  37. Wilsbacher, J. L., Goldsmith, E. J. & Cobb, M. H. Phosphorylation of MAP kinases by MAPK/ERK kinases involves multiple regions of MAP kinases. J. Biol. Chem. 274, 16988–16994 (1999).

    Article  CAS  Google Scholar 

  38. Han, J. et al. Characterization of the structure and function of a novel MAP kinase kinase (MKK6). J. Biol. Chem. 271, 2886– 2889 (1996).

    Article  CAS  Google Scholar 

  39. Tournier, C., Whitmarsh, A. J., Cavanagh, J., Barrett, T. & Davis, R. J. The MKK7 gene encodes a group of c-Jun NH2-terminal kinase kinases. Mol. Cell. Biol. 19, 1569–1581 ( 1999).

    Article  CAS  Google Scholar 

  40. Pritchard, C. A., Samuels, M. L., Bosch, E. & McMahon, M. Conditionally oncogenic forms of the A-Raf and B-Raf protein kinases display different biological and biochemical properties in NIH 3T3 cells. Mol. Cell. Biol. 15, 6430–6442 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Fukunaga, S. Arkinstall and M. McMahon for providing us with MNK1, MKP3 and ΔB-Raf:ER cells, respectively; M. Mishima for helpful discussion; and H. Yamanaka and R. Maeda for technical support. M.A. and T.M. are Research Fellows of the Japan Society for the Promotion of Science. This work was supported by grants from the Ministry of Education, Science and Culture of Japan (to E.N.).

Correspondence and requests for materials should be addressed to E.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eisuke Nishida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanoue, T., Adachi, M., Moriguchi, T. et al. A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat Cell Biol 2, 110–116 (2000). https://doi.org/10.1038/35000065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35000065

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing