Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype

Abstract

Activity-dependent change in the efficacy of transmission is a basic feature of many excitatory synapses in the central nervous system. The best understood postsynaptic modification involves a change in responsiveness of AMPAR (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor)-mediated currents following activation of NMDA ( N-methyl-D-aspartate) receptors1,2 or Ca2+-permeable AMPARs3,4,5,6. This process is thought to involve alteration in the number and phosphorylation state of postsynaptic AMPARs2. Here we describe a new form of synaptic plasticity—a rapid and lasting change in the subunit composition and Ca2+ permeability of AMPARs at cerebellar stellate cell synapses following synaptic activity. AMPARs lacking the edited GluR2 subunit not only exhibit high Ca2+ permeability7 but also are blocked by intracellular polyamines8,9,10,11. These properties have allowed us to follow directly the involvement of GluR2 subunits in synaptic transmission. Repetitive synaptic activation of Ca2+-permeable AMPARs causes a rapid reduction in Ca2+ permeability and a change in the amplitude of excitatory postsynaptic currents, owing to the incorporation of GluR2-containing AMPARs. Our experiments show that activity-induced Ca2+ influx through GluR2-lacking AMPARs controls the targeting of GluR2-containing AMPARs, implying the presence of a self-regulating mechanism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synaptic currents in stellate cells exhibit properties of GluR2-lacking AMPARs.
Figure 2: Extrasynaptic patches exhibit IV plots (outwardly rectifying in a; linear in b), indicative of GluR2-containing AMPARs.
Figure 3: High-frequency synaptic stimulation induced a change in the rectification of IV relationships of EPSCs.
Figure 4: Calcium influx through non-NMDA glutamate receptors is sufficient to trigger activity-dependent change in EPSC rectification.

Similar content being viewed by others

References

  1. Bliss, T. V. P. & Collingridge, G. L. A synaptic model of memory—long-term potentiation in the hippocampus. Nature 361, 31–39 ( 1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Malenka, R. C. & Nicoll, R. A. Long-term potentiation—a decade of progress? Science 285, 1870– 1874 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Gu, J. G., Albuquerque, C., Lee, C. J. & MacDermott, A. B. Synaptic strengthening through activation of Ca2+-permeable AMPA receptors. Nature 381, 793– 796 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Mahanty, N. K. & Sah, P. Calcium-permeable AMPA receptors mediated long-term potentiation in interneurons in the amydala. Nature 394, 683–687 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Feldmeyer, D. et al. Neurological dysfunctions in mice expressing different levels of the Q/R site-unedited AMPAR subunit GluR-B. Nature Neurosci. 2, 57–64 (1999 ).

    Article  CAS  PubMed  Google Scholar 

  6. Laezza, F., Doherty, J. J. & Dingledine, R. Long term depression in Hippocampal interneurons: joint requirement for pre- and postsynaptic events. Science 285, 1411–1414 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Geiger, J. R. P. et al. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15, 193–204 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Rozov, A. & Burnashev, N. Polyamine-dependent facilitation of postsynaptic AMPA receptors counteracts paired-pulse depression. Nature 401, 594–598 ( 1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Bowie, D. & Mayer, M. Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion-channel block. Neuron 15, 453–462 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Kamboj, S. K., Swanson, G. T. & Cull-Candy, S. G. Intracellular spermine confers rectification on rat calcium-permeable AMPA and kainate receptors. J. Physiol. 486, 297–303 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Koh, D-S., Burnashev, N. & Jonas, P. Block of native Ca2+-permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. J. Physiol. 486, 305–312 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Clark, B. A. & Cull-Candy, S. Frequency-dependent activation of NMDA receptors at an ‘AMPA receptor only’ synapse in the rat cerebellum. J. Physiol. 518P, 156P (1999).

    Google Scholar 

  13. Blaschke, M. et al. A single amino acid determined the subunit-specific spider toxin block of α-amino-3-hydroxy-5-methlisoxazole-4-propionate/kainate receptor channels. Proc. Natl Acad. Sci. USA 90, 6528–6532 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yamkura. T., Sakimura. K., Mishina. M. & Shimoji, K. The sensitivity of AMPA-selective glutamate receptor channels to pentobarbital is determined by a single amino acid residue of the α2 subunit. FEBS Lett. 374 , 412–414 (1995).

    Article  Google Scholar 

  15. Swanson, G. T., Kamboj, S. K. & Cull-Candy, S. G. Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition. J. Neurosc. 17, 58–69 ( 1997).

    Article  CAS  Google Scholar 

  16. Masu, M., Tanabe, Y., Tsuchida, K., Shigemoto, R. & Nakanishi, S. Sequence and expression of a metabotropic glutamate receptor. Nature 349, 760– 765 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Hausser, M. & Clark, B. A. Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 19, 665–678 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  18. Toth, K, & McBain, C. J. Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons. Nature Neurosci. 1, 572– 578 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Spruston, N., Schiller, Y., Stuart, G. & Sakmann, B. Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268, 297–300 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Magee, J. Hoffman, D., Colbert, C. & Johnston, D. Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. Annu. Rev. Physiol. 60, 327–346 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Seidenbecher, C. I. et al. Caldendrin, a novel neuronal calcium-binding protein confined to the somato-dendritic compartment. J. Biol. Chem. 273, 21324–21331 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Lledo, P-M., Zhang, X., Sudhof, T. C., Malanka, R. C. & Nicoll, R. A. Postsynaptic membrane fusion and long-term potentiation. Science 279, 399–403 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Shi, S. -H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Song, I. et al. Interaction of the N-ethylmaleimide-sensitive factor with AMPA receptors. Neuron 21, 393– 400 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Osten, P. et al. The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and α- and β-SNAPs. Neuron 21, 99–110 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  26. Nishimune, A. et al. NSF binding to GluR2 regulates synaptic transmission. Neuron 21, 87–97 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  27. Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C. & Nelson, S. B. Activity-dependent scaling of quantal amplitude in neocortical ceurons. Nature 391 , 892–896 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. O'Brien, R. J. et al. Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 21, 1067–1078 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Carrol, R. C., Lissin, D. V., von Zastrow, M., Nicoll, R. A. & Malenka, R. C. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nature Neurosci. 2, 454–460 (1999).

    Article  Google Scholar 

  30. Benke, T. A., Luthi, A., Issac, J. T. & Collingridge, G. L. Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 393, 793–797 ( 1998).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Brickley, B. Clark, M. Farrant, C. Misra, S. Traynelis and M. Whim for helpful advice, discussion and comments on the manuscript, and J. Thomas for technical help. This work was supported by the Wellcome Trust. S.-Q.L. was in receipt of a Wellcome Trust Travelling Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart G. Cull-Candy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, SQ., Cull-Candy, S. Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature 405, 454–458 (2000). https://doi.org/10.1038/35013064

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35013064

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing