Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nature of the motor element in electrokinetic shape changes of cochlear outer hair cells

Abstract

IT is the prevailing notion that cochlear outer hair cells function as mechanical effectors as well as sensory receptors1–3. Electrically induced changes in the shape of mammalian outer hair cells4,5, studied in vitro, are commonly assumed to represent an aspect of their effector process that may occur in vivo. The nature of the motile process is obscure, even though none of the established cellular motors can be involved6. Although it is known that the motile response is under voltage control7, it is uncertain whether the stimulus is a drop in the voltage along the long axis of the cell or variation in the transmembrane potential. We have now performed experiments with cells partitioned in differing degrees between two chambers. Applied voltage stimulates the cell membrane segments in opposite polarity to an amount dependent on the partitioning. The findings show, in accordance with previous suggestions6–8, that the driving stimulus is a local transmembrane voltage drop and that the cellular motor consists of many independent elements, distributed along the cell membrane and its associated cortical structures. We further show that the primary action of the motor elements is along the longitudinal dimension of the cell without necessarily involving changes in intracellular hydrostatic pressure. This establishes the outer hair cell motor as unique among mechanisms that control cell shape9.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Davis, H. Hearing Res. 9, 79–90 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Dallos, P. in Contemporary Sensory Neurobiology (eds Correia M. J. & Perachio A. A.) 207–230 (Alan R. Liss, New York, 1985).

    Google Scholar 

  3. Kim, D. O. Hearing Res. 22, 105–114 (1986).

    Article  CAS  Google Scholar 

  4. Brownell, W. E. in Mechanisms of Hearing (eds Webster W. R. & Aitkin L. M.) 5–10 (Monash Univ. Press, Clayton, Australia, 1983).

    Google Scholar 

  5. Brownell W. E., Bader, C. R., Bertrand, D. & de Ribaupierre, Y. Science 227, 194–196 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Holley, M. C. & Ashmore, J. F. Proc R. Soc. B232, 413–429 (1988).

    ADS  CAS  Google Scholar 

  7. Santos-Sacchi, J. & Dilger, J. P. Hearing Res. 35, 143–150 (1988).

    Article  CAS  Google Scholar 

  8. Ashmore, J. F. J. Physiol., Lond. 388, 323–347 (1987).

    Article  CAS  Google Scholar 

  9. Lackie, J. M. Cell Movement and Cell Behaviour (Allen & Unwin, London, 1986).

    Book  Google Scholar 

  10. Saito, K. Cell Tiss. Res. 229, 467–481 (1983).

    Article  CAS  Google Scholar 

  11. Evans, B. N. Hearing Res. 45, 265–282 (1990).

    Article  CAS  Google Scholar 

  12. Flock, Å., Flock, B. & Ulfendahl, M. Arch. Otorhinolaryngol. 243, 83–90 (1986).

    Article  CAS  Google Scholar 

  13. Holley, M. C. & Ashmore, J. F. Nature 335, 635–637 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Bannister, L. H., Dodson, H. C., Astbury, A. F. & Douek, E. E. Prog. Brain. Res. 74, 213–219 (1988).

    Article  CAS  Google Scholar 

  15. Smith, C. A. & Dempsey, E. W. Am. J. Anat. 100, 337–367 (1957).

    Article  CAS  Google Scholar 

  16. Guinan, J. J., Warr, W. B. & Norris, B. E. J. comp. Neurol. 221, 358–370 (1983).

    Article  Google Scholar 

  17. Spoendlin, H. Acta Otolaryngol. (Stockholm) 67, 239–254 (1969).

    Article  CAS  Google Scholar 

  18. Dallos, P. & Harris, D. M. J. Neurophysiol. 41, 365–383 (1978).

    Article  CAS  Google Scholar 

  19. Dallos, P. in Auditory Function (eds Edelman G. M., Gall W. E. & Cowan W. M. 153–188 (J. Wiley, New York, 1988).

    Google Scholar 

  20. Brownell, W. E. & Kachar, B. in Peripheral Auditory Mechanisms (eds Allen J. B., Hall J. L., Hubbard A., Neely S. T. & Tubis A.) 369–376 (Springer-Verlag, New York, 1986).

    Book  Google Scholar 

  21. Brownell, W. E. Ear and Hearing 11, 82–92 (1990).

    Article  CAS  Google Scholar 

  22. Jen, D. H. & Steele, C. R. J. acoust. Soc. Amer. 82, 1667–1678 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Baylor, D. A., Lamb, T. D. & Yau, K.-W. J. Physiol., Lond. 288, 589–611 (1979).

    CAS  Google Scholar 

  24. Holley, M. C. & Ashmore, J. F. J. Cell Sci 96, 283–291 (1990).

    CAS  PubMed  Google Scholar 

  25. Evans, B. N. thesis, Univ. Texas Health Sciences Center, Houston (1988).

  26. Clark, B. A., Hallworth, R. & Evans, B. N. Pflügers Arch. 415, 490–493 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dallos, P., Evans, B. & Hallworth, R. Nature of the motor element in electrokinetic shape changes of cochlear outer hair cells. Nature 350, 155–157 (1991). https://doi.org/10.1038/350155a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/350155a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing