Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LET-413 is a basolateral protein required for the assembly of adherens junctions in Caenorhabditis elegans

Abstract

Epithelial cells are polarized, with apical and basal compartments demarcated by tight and adherens junctions. Proper establishment of these subapical junctions is critical for normal development and histogenesis. We report the characterization of the gene let-413 which has a critical role in assembling adherens junctions in Caenorhabditis elegans. In let-413 mutants, adherens junctions are abnormal and mislocalized to more basolateral positions, epithelial cell polarity is affected and the actin cytoskeleton is disorganized. The LET-413 protein contains one PDZ domain and 16 leucine-rich repeats with high homology to proteins known to interact with small GTPases. Strikingly, LET-413 localizes to the basolateral membrane. We suggest that LET-413 acts as an adaptor protein involved in polarizing protein trafficking in epithelial cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: let-413 mutants present morphogenetic defects and epithelial abnormalities.
Figure 2: let-413 encodes a member of the newly defined LAP family of proteins.
Figure 3: Alignment of LAP proteins.
Figure 4: LET-413 is localized at the basolateral membrane of epithelial cells.
Figure 5: The apical compartment and the cytoskeleton are disturbed in epithelia of let-413 mutants.
Figure 6: Adherens junctions are abnormal and mislocalized in let-413 embryos.

Similar content being viewed by others

References

  1. Yeaman, C., Grindstaff, K. K. & Nelson, W. J. New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol. Rev. 79, 73–98 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Baumgartner, S. et al. A Drosophila neurexin is required for septate junction and blood-nerve barrier formation and function. Cell 87, 1059–1068 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Woods, D. F., Hough, C., Peel, D., Callaini, G. & Bryant, P. J. Dlg protein is required for junction structure, cell polarity, and proliferation control in Drosophila epithelia. J. Cell Biol. 134, 1469–1482 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Ward, R. E., Lamb, R. S. & Fehon, R. G. A conserved functional domain of Drosophila coracle is required for localization at the septate junction and has membrane-organizing activity. J. Cell Biol. 140, 1463–1473 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Bhat, M.A. et al. Discs Lost, a novel multi-PDZ domain protein, establishes and maintains epithelial polarity. Cell 96, 833–845 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Klebes, A. & Knust, E. A conserved motif in Crumbs is required for E-cadherin localisation and zonula adherens formation in Drosophila. Curr. Biol. 10, 76–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Yeaman, C., Grindstaff, K.K., Hansen, M.D. & Nelson, W.J. Cell polarity: Versatile scaffolds keep things in place. Curr. Biol. 9, R515–517 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Tepass, U., Theres, C. & Knust, E. crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell 61, 787–799 (1990).

    Google Scholar 

  9. Ponting, C.P., Phillips, C., Davies, K.E. & Blake, D.J. PDZ domains: targeting signalling molecules to sub-membranous sites. BioEssays 19, 469–479 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Hoskins, R., Hajnal, A.F., Harp, S.A. & Kim, S.K. The C. elegans vulval induction gene lin-2 encodes a member of the MAGUK family of cell junction proteins. Development 122, 97–111 (1996).

    CAS  PubMed  Google Scholar 

  11. Simske, J. S., Kaech, S. M., Harp, S. A. & Kim, S. K. LET-23 receptor localization by the cell junction protein LIN-7 during C. elegans vulval induction. Cell 85, 195–204 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Kaech, S. M., Whitfield, C. W. & Kim, S. K. The LIN-2/LIN-7/LIN-10 complex mediates basolateral membrane localization of the C. elegans EGF receptor LET-23 in vulval epithelial cells. Cell 94, 761–771 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Costa, M. et al. A putative catenin-cadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. J. Cell Biol. 141, 297–308 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Raich, W. B., Agbunag, C. & Hardin, J. Rapid epithelial-sheet sealing in the Caenorhabditis elegans embryo requires cadherin-dependent filopodial priming. Curr. Biol. 9, 1139–1146 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Priess, J. R. & Hirsh, D. I. Caenorhabditis elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo. Dev. Biol. 117, 156–173 (1986).

    Google Scholar 

  16. Wissmann, A., Ingles, J., McGhee, J. D. & Mains, P. E. Caenorhabditis elegans LET-502 is related to Rho-binding kinases and human myotonic dystrophy kinase and interacts genetically with a homolog of the regulatory subunit of smooth muscle myosin phosphatase to affect cell shape. Genes Dev. 11, 409–422 (1997).

    Google Scholar 

  17. Francis, R. & Waterston, R. H. Muscle cell attachment in Caenorhabditis elegans. J. Cell Biol. 114, 465–479 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Podbilewicz, B. & White, J. G. Cell fusions in the developing epithelial of C. elegans. Dev. Biol. 161, 408–424 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Mohler, W. A., Simske, J. S., Williams-Masson, E. M., Hardin, J. D. & White, J. G. Dynamics and ultrastructure of developmental cell fusions in the Caenorhabditis elegans hypodermis. Curr. Biol. 8, 1087–1090 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. White, J. In The Nematode Caenorhabditis elegans (ed. Wood, W. W. and the Community of C. elegans Researchers) 81–122 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1988).

  21. Leung, B., Hermann, G. J. & Priess, J. R. Organogenesis of the Caenorhabditis elegans intestine. Dev. Biol. 216, 114–134 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Labouesse, M. Deficiency screen based on the monoclonal antibody MH27 to identify genetic loci required for morphogenesis of the Caenorhabditis elegans embryo. Dev. Dyn. 210, 19–32 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Johnsen, R. C. & Baillie, D. L. Genetic analysis of a major segment [LGV(left)] of the genome of Caenorhabditis elegans. Genetics 129, 735–752 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Apperson, M. L., Moon, I. S. & Kennedy, M. B. Characterization of densin-180, a new brain-specific synaptic protein of the O-sialoglycoprotein family. J. Neurosci. 16, 6839–6852 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bilder, D. & Perrimon, N. Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 403, 676–680 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Bateman, A. et al. The Pfam Protein Families Database. Nucleic Acids Res. 28, 263–266 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kobe, B. & Deisenhofer, J. Crystal structure of porcine ribonuclease inhibitor, a protein with leucine-rich repeats. Nature 366, 751–756 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Hillig, R. C. et al. The crystal structure of rna1 p: a new fold for a GTPase-activating protein. Mol. Cell 3, 781–791 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Kajava, A. V. Structural diversity of leucine-rich repeat proteins. J. Mol. Biol. 277, 519–527 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Sieburth, D. S., Sun, Q. & Han, M. SUR-8, a conserved Ras-binding protein with leucine-rich repeats, positively regulates Ras-mediated signaling in C. elegans. Cell 94, 119–130 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Selfors, L. M., Schutzman, J. L., Borland, C. Z. & Stern, M. J. soc-2 encodes a leucine-rich repeat protein implicated in fibroblast growth factor receptor signaling. Proc. Natl Acad. Sci. USA 95, 6903–6908 (1998).

    Google Scholar 

  33. Matter, K. Epithelial polarity: sorting out the sorters. Curr. Biol. 9, R39-R42 (1999).

    Google Scholar 

  34. Songyang, Z. et al. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275, 73–77 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Tabuse, Y. et al. Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development 125, 3607–3614 (1998).

    CAS  PubMed  Google Scholar 

  37. Hresko, M. C., Schriefer, L. A., Shrimankar, P. & Waterston, R. H. Myotactin, a novel hypodermal protein involved in muscle-cell adhesion in Caenorhabditis elegans. J. Cell Biol. 146, 659–672 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grawe, F., Wodarz, A., Lee, B., Knust, E. & Skaer, H. The Drosophila genes crumbs and stardust are involved in the biogenesis of adherens junctions. Development 122, 951–959 (1996).

    CAS  PubMed  Google Scholar 

  39. Sternberg, P. W. & Han, M. Genetics of RAS signaling in C. elegans. Trends Genet. 14, 466–472 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Kroschewski, R., Hall, A. & Mellman, I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nature Cell Biol. 1, 8–13 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Adamo, J. E., Rossi, G. & Brennwald, P. The rho GTPase rho3 has a direct role in exocytosis that is distinct from its role in actin polarity. Mol. Biol. Cell 10, 4121–4133 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Martinez, O. & Goud, B. Rab proteins. Biochim. Biophys. Acta 1404, 101–112 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. McKim, K. S., Heschl, M. F., Rosenbluth, R. E. & Baillie, D. L. Genetic organization of the unc-60 region in Caenorhabditis elegans. Genetics 118, 49–59 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Williams, B. D., Schrank, B., Huynh, C., Shownkeen, R. & Waterston, R. H. A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics 131, 609–624 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mello, C. & Fire, A. DNA transformation. Methods Cell Biol. 48, 451–482 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. The C. elegans Sequence Consortium. Genome sequence of the nematode C. elegans: A platform for investigating biology. Science 282, 2012–2018 (1998).

  49. Labouesse, M., Hartwieg, E. & Horvitz, H. R. The Caenorhabditis elegans LIN-26 protein is required to specify and/or maintain all non-neuronal ectodermal cell fates. Development 122, 2579–2588 (1996).

    CAS  PubMed  Google Scholar 

  50. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to J.-P. Borg, A. Le Bivic and D. Birnbaum for sharing unpublished information, to A. Coulson, A. Fire, J. Hardin, Y. Kohara, J. Priess, Y. Tabuse, S. Tuck and B. Waterston for reagents. Some strains were provided by the Caenorhabditis Genetic stock centre, which is supported by the National Institute of Health and the National centre for Research Resources. We thank J.-L. Vonesch and N. Messaddeq for help with confocal microscopy, G. Duval for assistance with rabbits and Olivier Poch for help with sequence alignments. We thank very much L. McMahon, E. Georges-Labouesse, A. Giangrande and N. Skaer for stimulating discussions and critical reading of the manuscript. Work of DLB was supported by a research grant from the Natural Sciences and Engineering Research Council of Canada; work at the IGBMC was supported by funds from the CNRS, INSERM, Hôpital Universitaire de Strasbourg, by grants from the EEC-TMR programme and the Association pour la Recherche contre le Cancer to M.L.

Correspondence should be addressed to M.L The EMBL accession number for the sequence of cDNA yk660h2 is AJ276590.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Labouesse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Legouis, R., Gansmuller, A., Sookhareea, S. et al. LET-413 is a basolateral protein required for the assembly of adherens junctions in Caenorhabditis elegans . Nat Cell Biol 2, 415–422 (2000). https://doi.org/10.1038/35017046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35017046

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing