Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transition-state analogue inhibitors of γ-secretase bind directly to presenilin-1

Abstract

The β-amyloid precursor protein (β-APP), which is involved in the pathogenesis of Alzheimer’s disease, and the Notch receptor, which is responsible for critical signalling events during development, both undergo unusual proteolysis within their transmembrane domains by unknown γ-secretases. Here we show that an affinity reagent designed to interact with the active site of γ-secretase binds directly and specifically to heterodimeric forms of presenilins, polytopic proteins that are mutated in hereditary Alzheimer’s and are known mediators of γ-secretase cleavage of both β-APP and Notch. These results provide evidence that heterodimeric presenilins contain the active site of γ-secretase, and validate presenilins as principal targets for the design of drugs to treat and prevent Alzheimer’s disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design and synthesis of transition-state-analogue affinity reagents for γ-secretase.
Figure 2: Effects of designed peptidomimetic inhibitors on β-APP processing.
Figure 3: Specific covalent binding of γ-secretase inhibitor BrA–1–Bt to an Mr ~21K protein in cell lysates.
Figure 4: Identification of the affinity-labelled Mr ~21K protein as the C-terminal subunit of PS1.
Figure 5: Specific covalent binding of γ-secretase inhibitor BrA–1–Bt to Mr ~21K and ~31K proteins in isolated microsomes.
Figure 6: γ-secretase affinity reagent binds to the C-terminal subunits of PS1 and PS2.
Figure 7: γ-secretase affinity reagent binds to PS1 NTF–CTF heterodimers.
Figure 8: PS1 subunits are labelled by γ-secretase affinity reagent in living, intact cells.

Similar content being viewed by others

References

  1. Hardy, J. The Alzheimer family of diseases: many etiologies, one pathogenesis? Proc. Natl Acad. Sci. USA 94, 2095–2097 (1997).

  2. Selkoe, D. J. Alzheimer’s disease: genotypes, phenotypes and treatments. Science 275, 630–631 ( 1997).

    Article  CAS  Google Scholar 

  3. Selkoe, D. J. Translating cell biology into therapeutic advances in Alzheimer’s disease . Nature 399 A23–A31 (1999).

  4. Vassar, R. et al. beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286, 735–741 (1999).

    Article  CAS  Google Scholar 

  5. Sinha, S. et al. Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 402, 537–540 (1999).

  6. Yan, R. et al. Membrane-anchored aspartyl protease with Alzheimer’s disease beta-secretase activity. Nature 402, 533 –537 (1999).

    Article  CAS  Google Scholar 

  7. Hussain, I. et al. Identification of a novel aspartic protease (Asp2) as beta-secretase . Mol. Cell Neurosci. 14, 419– 427 (1999).

    Article  CAS  Google Scholar 

  8. Lichtenthaler, S. F. et al. Mechanism of the cleavage specificity of Alzheimer’s disease gamma-secretase identified by phenylalanine-scanning mutagenesis of the transmembrane domain of the amyloid precursor protein. Proc. Natl Acad. Sci. USA 96, 3053–3058 (1999).

    Article  CAS  Google Scholar 

  9. Wolfe, M. S. et al. Peptidomimetic probes and molecular modeling suggest Alzheimer’s γ-secretases are intramembrane-cleaving aspartyl proteases. Biochemistry 38, 4720–7 (1999).

    Article  CAS  Google Scholar 

  10. Buxbaum, J. D. et al. Evidence that tumor necrosis factor α converting enzyme is involved in regulated α-secretase cleavage of the Alzheimer’s amyloid protein precursor. J. Biol. Chem. 273, 27765–27767 (1998).

  11. Brou, C. et al. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol. Cell 5, 207–216 (2000).

    Article  CAS  Google Scholar 

  12. De Strooper, B. et al. A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522 (1999).

    Article  CAS  Google Scholar 

  13. Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998).

    Article  CAS  Google Scholar 

  14. De Strooper, B. et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391, 387 –390 (1998).

    Article  CAS  Google Scholar 

  15. Li, X. & Greenwald, I. Membrane topology of the C. elegans SEL-12 presenilin. Neuron 17, 1015– 1021 (1996).

    Article  CAS  Google Scholar 

  16. Li, X. & Greenwald, I. Additional evidence for an eight-transmembrane-domain topology for Caenorhabditis elegans and human presenilins. Proc. Natl Acad. Sci. USA 95, 7109–7114 (1998).

    Article  CAS  Google Scholar 

  17. Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375, 754–760 (1995).

    Article  CAS  Google Scholar 

  18. Wolfe, M. S. et al. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature 398, 513–517 ( 1999).

    Article  CAS  Google Scholar 

  19. Leimer, U. et al. Zebrafish (Danio rerio) presenilin promotes aberrant amyloid beta- peptide production and requires a critical aspartate residue for its function in amyloidogenesis. Biochemistry 38 , 13602–13609 (1999).

    Article  CAS  Google Scholar 

  20. Steiner, H. et al. A loss of function mutation of presenilin-2 interferes with amyloid beta-peptide production and Notch signaling. J. Biol. Chem. 274, 28669–28673 ( 1999).

    Article  CAS  Google Scholar 

  21. Kimberly, W. T., Xia, W., Rahmati, T., Wolfe, M. S. & Selkoe, D. J. The transmembrane aspartates in presenilin 1 and 2 are obligatory for gamma-secretase activity and amyloid beta-protein generation . J. Biol. Chem. 275, 3173–3178 (2000).

  22. Ray, W. J. et al. Cell surface presenilin-1 participates in the gamma-secretase-like proteolysis of Notch. J. Biol. Chem. 274, 36801–36807 (1999).

    Article  CAS  Google Scholar 

  23. Berezovska, O. et al. Two transmembrane aspartate mutations in presenilin impair Notch 1 proteolysis and nuclear translocation, with relative preservation of Notch signaling. J. Neurochem. (in the press).

  24. Wolfe, M. S. et al. A substrate-based difluoro ketone selectively inhibits Alzheimer’s γ-secretase activity. J. Med. Chem. 41, 6– 9 (1998).

    Article  CAS  Google Scholar 

  25. Tischer, E. & Cordell, B. Beta-amyloid precursor protein. Location of transmembrane domain and specificity of gamma-secretase cleavage. J. Biol. Chem. 271, 21914–21919 (1996).

    Article  CAS  Google Scholar 

  26. Maruyama, K. et al. Familial Alzheimer’s disease-linked mutations at Val717 of amyloid precursor protein are specific for the increased secretion of A beta 42(43). Biochem. Biophys. Res. Commun. 227, 730–735 (1996).

  27. Lichtenthaler, S. F., Ida, N., Multhaup, G., Masters, C. L. & Beyreuther, K. Mutations in the transmembrane domain of APP altering gamma-secretase specificity. Biochemistry 36, 15396–15403 (1997).

    Article  CAS  Google Scholar 

  28. Wolfe, M. S. et al. Peptidomimetic probes suggest a large S1 pocket for Alzheimer’s γ-secretase . Soc. Neurosci. 25, abstract 122.3 (1999).

  29. Atlas, D., Steer, M. L. & Levitzki, A. Affinity label for beta-adrenergic receptor in turkey erythrocytes. Proc. Natl Acad. Sci. USA 73, 1921–1925 (1976).

    Article  CAS  Google Scholar 

  30. Kohrle, J. et al. Affinity labeling of rat liver and kidney type I5′-deiodinase. Identification of the 27-kDa substrate binding subunit. J. Biol. Chem. 265, 6155–6163 ( 1990).

    CAS  PubMed  Google Scholar 

  31. Smar, M. W. et al. Selective irreversible inhibitors of aldose reductase. J. Med. Chem. 35, 1117–1120 (1992).

    Article  CAS  Google Scholar 

  32. Thinakaran, G. et al. Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17, 181 –190 (1996).

    Article  CAS  Google Scholar 

  33. Podlisny, M. B. et al. Presenilin proteins undergo heterogeneous endoproteolysis between Thr291 and Ala299 and occur as stable N- and C-terminal fragments in normal and Alzheimer brain tissue. Neurobiol. Dis. 3 325–337 (1997).

  34. Capell, A. et al. The proteolytic fragments of the Alzheimer’s disease-associated presenilin-1 form heterodimers and occur as a 100-150-kDa molecular mass complex . J. Biol. Chem. 273, 3205– 3211 (1998).

    Article  CAS  Google Scholar 

  35. Thinakaran, G. et al. Evidence that levels of presenilins (PS1 and PS2) are coordinately regulated by competition for limiting cellular factors. J. Biol. Chem. 272, 28415–28422 ( 1997).

    Article  CAS  Google Scholar 

  36. Yu, G. et al. The presenilin 1 protein is a component of a high molecular weight intracellular complex that contains beta-catenin. J. Biol. Chem. 273, 16470–16475 (1998).

    Article  CAS  Google Scholar 

  37. Xia, W. et al. Presenilin complexes with the C-terminal fragments of Amyloid Precursor Protein at the sites of Amyloid β-protein generation. Proc. Natl Acad. Sci. USA (in the press).

  38. Ratovitski, T. et al. Endoproteolytic processing and stabilization of wild-type and mutant presenilin. J. Biol. Chem. 272, 24536–24541 (1997).

    Article  CAS  Google Scholar 

  39. Selkoe, D. J. Notch and presenilins in vertebrates and invertebrates: implications for neuronal development and degeneration. Curr. Opin. Neurobiol. 10, 50–57 (2000).

    Article  CAS  Google Scholar 

  40. Herreman, A. et al. Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proc. Natl Acad. Sci. USA 96, 11872–11877 ( 1999).

    Article  CAS  Google Scholar 

  41. Struhl, G. & Greenwald, I. Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398, 522–525 (1999).

    Article  CAS  Google Scholar 

  42. Ye, Y., Lukinova, N. & Fortini, M. E. Neurogenic phenotypes and altered Notch processing in Drosophila presenilin mutants. Nature 398, 525–529 (1999).

    Article  CAS  Google Scholar 

  43. Fehrentz, J-A. & Castro, B. An efficient synthesis of optically active α-(t-butoxycarbonylamino)-aldehydes from α-amino acids. Synthesis 1983, 676–678 (1983).

    Article  Google Scholar 

  44. Koo, E. H. & Squazzo, S. L. Evidence that production and release of amyloid beta-protein involves the endocytic pathway. J. Biol. Chem. 269, 17386–17389 ( 1994).

    CAS  PubMed  Google Scholar 

  45. Xia, W. et al. Presenilin 1 regulates the processing of beta-amyloid precursor protein C-terminal fragments and the generation of amyloid beta-protein in endoplasmic reticulum and Golgi. Biochemistry 37, 16465–16471 (1998).

  46. Haass, C. et al. Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 359, 322– 325 (1992).

    Article  CAS  Google Scholar 

  47. Xia, W., Zhang, J., Perez, R., Koo, E. H. & Selkoe, D. J. Interaction between amyloid precursor protein and presenilins in mammalian cells: implications for the pathogenesis of Alzheimer disease. Proc. Natl Acad. Sci. USA 94, 8208 –8213 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Miller and D. Walsh for helpful discussions, W. Ye for help with cell cultures, J. Shen for providing PS1–/– mouse fibroblasts, S. Gandy for antibody Ab14, C. Haass for antibody 2972 and T. Iwatsubo for antibody PS2L. This work was supported by NIH grants NS37537 (to M.S.W.) and AG12749 (to D.J.S.) and by a Pioneer Award from the Alzheimer’s Association (to D.J.S.).

Correspondence and requests for materials should be addressed to M.S.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Wolfe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esler, W., Kimberly, W., Ostaszewski, B. et al. Transition-state analogue inhibitors of γ-secretase bind directly to presenilin-1. Nat Cell Biol 2, 428–434 (2000). https://doi.org/10.1038/35017062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35017062

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing