Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inactivation of the apoptosis effector Apaf-1 in malignant melanoma

Abstract

Metastatic melanoma is a deadly cancer that fails to respond to conventional chemotherapy and is poorly understood at the molecular level1. p53 mutations often occur in aggressive and chemoresistant cancers but are rarely observed in melanoma1,2. Here we show that metastatic melanomas often lose Apaf-1, a cell-death effector that acts with cytochrome c and caspase-9 to mediate p53-dependent apoptosis3. Loss of Apaf-1 expression is accompanied by allelic loss in metastatic melanomas, but can be recovered in melanoma cell lines by treatment with the methylation inhibitor 5-aza-2′-deoxycytidine (5aza2dC). Apaf-1-negative melanomas are invariably chemoresistant and are unable to execute a typical apoptotic programme in response to p53 activation. Restoring physiological levels of Apaf-1 through gene transfer or 5aza2dC treatment markedly enhances chemosensitivity and rescues the apoptotic defects associated with Apaf-1 loss. We conclude that Apaf-1 is inactivated in metastatic melanomas, which leads to defects in the execution of apoptotic cell death. Apaf-1 loss may contribute to the low frequency of p53 mutations observed in this highly chemoresistant tumour type.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Apaf-1 loss in metastatic melanoma.
Figure 2: Apaf-1 loss in melanoma cell lines.
Figure 3: Apaf-1 deficiency compromises p53-dependent apoptotic response to chemotherapeutic drugs.
Figure 4: Apoptotic defects in Apaf-1-negative melanoma cells.
Figure 5: Apaf-1 loss uncouples cytochrome c release from Casp9 activation in melanoma cells.
Figure 6: Rescue of apoptotic defects by re-expression of Apaf-1.

Similar content being viewed by others

References

  1. Chin, L., Merlino, G. & DePinho, R. A. Malignant melanoma: modern black plague and genetic black box. Genes Dev. 12, 3467– 3481 (1998).

    Article  CAS  Google Scholar 

  2. Serrone, L. & Hersey, P. The chemoresistance of human malignant melanoma: an update. Melanoma Res. 9, 51 –58 (1999).

    Article  CAS  Google Scholar 

  3. Soengas, M. S. et al. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284, 156– 159 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Schmitt, C. A. & Lowe, S. W. Apoptosis and therapy. J. Pathol. 187, 127–137 (1999).

    Article  CAS  Google Scholar 

  5. Lowe, S. W., Ruley, H. E., Jacks, T. & Housman, D. E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957–967 ( 1993).

    Article  CAS  Google Scholar 

  6. Hakem, R. et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94, 339– 352 (1998).

    Article  CAS  Google Scholar 

  7. Fearnhead, H. O. et al. Oncogene-dependent apoptosis is mediated by caspase-9. Proc. Natl Acad. Sci. USA 95, 13664– 13669 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Baylin, S. B. & Herman, J. G. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 16, 168–174 (2000).

    Article  CAS  Google Scholar 

  9. Robertson, K. D. & Jones, P. A. DNA methylation: past, present and future directions. Carcinogenesis 21, 461–467 (2000).

    Article  CAS  Google Scholar 

  10. Bird, A. P. & Wolffe, A. P. Methylation-induced repression—belts, braces, and chromatin. Cell 99, 451– 454 (1999).

    Article  CAS  Google Scholar 

  11. Hark, A. T. et al. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405, 486– 489 (2000).

    Article  ADS  CAS  Google Scholar 

  12. Bell, A. C. & Felsenfeld, G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405, 482–485 ( 2000).

    Article  ADS  CAS  Google Scholar 

  13. Lowe, S. W. & Ruley, H. E. Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev. 7, 535–545 ( 1993).

    Article  CAS  Google Scholar 

  14. Green, D. R. & Reed, J. C. Mitochondria and apoptosis. Science 281, 1309–1312 ( 1998).

    Article  CAS  Google Scholar 

  15. Rodriguez, J. & Lazebnik, Y. Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev. 13, 3179– 3184 (1999).

    Article  CAS  Google Scholar 

  16. Zou, H., Li, Y., Liu, X. & Wang, X. An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274, 11549– 11556 (1999).

    Article  CAS  Google Scholar 

  17. Hu, Y., Benedict, M. A., Ding, L. & Nunez, G. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase- 9 activation and apoptosis. EMBO J. 18, 3586 –3595 (1999).

    Article  CAS  Google Scholar 

  18. Teitz, T. et al. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nature Med. 6, 529–535 (2000).

    Article  CAS  Google Scholar 

  19. Yamamoto, H., Gil, J., Schwartz, S. Jr & Perucho, M. Frameshift mutations in Fas, Apaf-1, and Bcl-10 in gastro-intestinal cancer of the microsatellite mutator phenotype. Cell Death Differ. 7, 238–239 (2000).

    Article  CAS  Google Scholar 

  20. Schmitt, C. A., McCurrach, M. E., de Stanchina, E., Wallace-Brodeur, R. R. & Lowe, S. W. INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev. 13, 2670–2677 (1999).

    Article  CAS  Google Scholar 

  21. Chin, L. et al. Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev. 11, 2822– 2834 (1997).

    Article  CAS  Google Scholar 

  22. Walker, G. J. et al. Virtually 100% of melanoma cell lines harbor alterations at the DNA level within CDKN2A, CDKN2B, or one of their downstream targets. Genes Chromosom. Cancer 22, 157–163 (1998).

    Article  CAS  Google Scholar 

  23. Grossman, D., McNiff, J. M., Li, F. & Altieri, D. C. Expression and targeting of the apoptosis inhibitor, survivin, in human melanoma. J. Invest. Dermatol. 113, 1076–1081 (1999).

    Article  CAS  Google Scholar 

  24. Irmler, M. et al. Inhibition of death receptor signals by cellular FLIP. Nature 388, 190–195 ( 1997).

    Article  ADS  CAS  Google Scholar 

  25. Selzer, E. et al. Expression of Bcl-2 family members in human melanocytes, in melanoma metastases and in melanoma cell lines. Melanoma Res. 8, 197–203 (1998).

    Article  CAS  Google Scholar 

  26. Mora, J. et al. Clinical categories of neuroblastoma are associated with different patterns of loss of heterozygosity on chromosome Arm 1p. J. Mol. Diag. 2, 1–9 ( 2000).

    Article  Google Scholar 

  27. Woo, M. et al. Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev. 12, 806– 819 (1998).

    Article  CAS  Google Scholar 

  28. Marcellus, R. C., Teodoro, J. G., Charbonneau, R., Shore, G. C. & Branton, P. E. Expression of p53 in Saos-2 osteosarcoma cells induces apoptosis which can be inhibited by Bcl-2 or the adenovirus E1B-55 kDa protein. Cell Growth Differ. 7, 1643–1650 (1996).

    CAS  PubMed  Google Scholar 

  29. Capodieci, P., Magi-Galluzzi, C., Moreira, G. Jr Zeheb, R. & Loda, M. Automated in situ hybridization: diagnostic and research applications. Diagn. Mol. Pathol. 7, 69–75 ( 1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Stillman and N. K. Cheung for support; M. McCurrach, W. Jiang, L. Chen and M. Dudas for technical assistance; M. Zhang, R. Davuluri and I. Ioshikhes for analysis of Apaf-1 CpG islands and assembly of Apaf-1 genomic sequence; G. Núñez for Apaf-1XL pcDNA construct; E. Querido, P. E. Branton and F. L. Graham for Ad-p53 and Ad-LacZ; and A. Houghton and R. Camalier for melanoma cell lines. We also thank G. Hannon, C. Schmitt, C. Hazan, K. Pohar, T. Tiongson and the Cold Spring Harbor Genome Center for help and advice. Y.L. is a Pew Scholar and S.W.L. is a Rita Allen Scholar. This work was supported by a long-term Postdoctoral Fellowship from the Human Frontiers in Science Program and a Special Fellowship from the Leukemia and Lymphoma Society (M.S.S), a K08 grant (D.P.), an ASCO Young Investigator Award (J.M.), grants from the Seraph Foundation (YL), and from the NIH and the NCI (C.C.C. and S.W.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott W. Lowe.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soengas, M., Capodieci, P., Polsky, D. et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma . Nature 409, 207–211 (2001). https://doi.org/10.1038/35051606

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35051606

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing