Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates

Abstract

Mechanical forces play a major role in the regulation of cell adhesion and cytoskeletal organization. In order to explore the molecular mechanism underlying this regulation, we have investigated the relationship between local force applied by the cell to the substrate and the assembly of focal adhesions. A novel approach was developed for real-time, high-resolution measurements of forces applied by cells at single adhesion sites. This method combines micropatterning of elastomer substrates and fluorescence imaging of focal adhesions in live cells expressing GFP-tagged vinculin. Local forces are correlated with the orientation, total fluorescence intensity and area of the focal adhesions, indicating a constant stress of 5.5 ± 2 nNμm-2. The dynamics of the force-dependent modulation of focal adhesions were characterized by blocking actomyosin contractility and were found to be on a time scale of seconds. The results put clear constraints on the possible molecular mechanisms for the mechanosensory response of focal adhesions to applied force.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fabrication and calibration of the patterned elastomer.
Figure 2: Cells plated on the patterned elastomer create distortions.
Figure 3: Visualization of forces and focal adhesions.
Figure 4: Distribution of forces in a cardiac myocyte.
Figure 5: Correlation between force and focal adhesion structure.

Similar content being viewed by others

References

  1. Yang, J. T., Rayburn, H. & Hynes, R. O. Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development 121, 549–560 ( 1995).

    Google Scholar 

  2. Sheetz, M. P., Felsenfeld, D. P. & Galbraith, C. G. Cell migration: regulation of force on extracellular-matrix–integrin complexes. Trends Cell Biol. 8, 51– 54 (1998).

    Article  CAS  Google Scholar 

  3. Rossiter, H., Alon, R. & Kupper, T. S. Selectins, T-cell rolling and inflammation. Mol. Med. Today 3, 214–222 (1997).

    Article  CAS  Google Scholar 

  4. Burridge, K. & Chrzanowska-Wodnicka, M. Focal adhesions, contractility, and signaling. Annu. Rev. Cell. Dev. Biol. 12, 463–518 (1996).

    Article  CAS  Google Scholar 

  5. Bershadsky, A. & Geiger, B. Cytoskeleton-associated anchor and signal transduction proteins. In Guidebook to the Extracellular Matrix, Anchor, and Adhesion Proteins (eds Kreis, T. & Vale, R.) 3–11 (Oxford Univ. Press, 1999).

    Google Scholar 

  6. Helfman, D. M. et al. Caldesmon inhibits nonmuscle cell contractility and interferes with the formation of focal adhesions. Mol. Biol. Cell 10, 3097–3112 (1999).

    Article  CAS  Google Scholar 

  7. Ingber, D. Integrins as mechanochemical transducers. Curr. Opin. Cell Biol. 3, 841–848 ( 1991).

    Article  CAS  Google Scholar 

  8. Yamada, K. M. & Geiger, B. Molecular interactions in cell adhesion complexes. Curr. Opin. Cell Biol. 9, 76– 85 (1997).

    Article  CAS  Google Scholar 

  9. Geiger, B., Yehuda-Levenberg, S. & Bershadsky, A. D. Molecular interactions in the submembrane plaque of cell–cell and cell–matrix adhesions. Acta Anat. (Basel) 154, 46–62 (1995).

    Article  CAS  Google Scholar 

  10. Abercrombie, M. & Dunn, G. A. Adhesions of fibroblasts to substratum during contact inhibition observed by interference reflection microscopy. Exp. Cell Res. 92, 57– 62 (1975).

    Article  CAS  Google Scholar 

  11. Choquet, D., Felsenfeld, D. P. & Sheetz, M. P. Extracellular matrix rigidity causes strengthening of integrin–cytoskeleton linkages. Cell 88, 39–48 (1997).

    Article  CAS  Google Scholar 

  12. Riveline, D. et al. Externally applied local mechanical force induces growth of focal contacts by a mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. (in the press).

  13. Harris, A. K., Wild, P. & Stopak, D. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208, 177– 179 (1980).

    Article  CAS  Google Scholar 

  14. Lee, J., Leonard, M., Oliver, T., Ishihara, A. & Jacobson, K. Traction forces generated by locomoting keratocytes . J. Cell Biol. 127, 1957– 1964 (1994).

    Article  CAS  Google Scholar 

  15. Galbraith, C. G. & Sheetz, M. P. A micromachined device provides a new bend on fibroblast traction forces. Proc. Natl Acad. Sci. USA 94, 9114–9118 (1997).

    Article  CAS  Google Scholar 

  16. Dembo, M. & Wang, Y. L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76, 2307–2316 (1999).

    Article  CAS  Google Scholar 

  17. Burton, K. & Taylor, D. L. Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385, 450–454 (1997).

    Article  CAS  Google Scholar 

  18. Burton, K., Park, J. H. & Taylor, D. L. Keratocytes generate traction forces in two phases . Mol. Biol. Cell 10, 3745– 3769 (1999).

    Article  CAS  Google Scholar 

  19. Zamir, E. et al. Dynamics and segregation of cell-matrix adhesions in cultured fibroblasts. Nature Cell Biol. 2, 191– 196 (2000).

    Article  CAS  Google Scholar 

  20. Zamir, E. et al. Molecular diversity of cell–matrix adhesions. J. Cell Sci. 112, 1655–1669 (1999).

    CAS  Google Scholar 

  21. Dembo, M., Oliver, T., Ishihara, A. & Jacobson, K. Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. Biophys. J. 70, 2008–2022 (1996).

    Article  CAS  Google Scholar 

  22. Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    Article  CAS  Google Scholar 

  23. Cramer, L. P. & Mitchison, T. J. Myosin is involved in postmitotic cell spreading. J. Cell Biol. 131, 179– 189 (1995).

    Article  CAS  Google Scholar 

  24. Beningo, K. A., Dembo, M., Kaverina, I. N., Small, J. V. & Wang, Y.-L. Nascent focal adhesions are responsible for the generation of strong traction forces in migrating cells. Mol. Biol. Cell 11, 4 (2000).

    Article  Google Scholar 

  25. Zhong, C. et al. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J. Cell Biol. 141, 539–551 (1998).

    Article  CAS  Google Scholar 

  26. Shaub, A. Unravelling the extracellular matrix. Nature Cell Biol. 1, E173–E175 (2000).

    Article  Google Scholar 

  27. Howe, A., Aplin, A. E., Alahari, S. K. & Juliano, R. L. Integrin signaling and cell growth control. Curr. Opin. Cell Biol. 10, 220–231 ( 1998).

    Article  CAS  Google Scholar 

  28. Felsenfeld, D. P., Schwartzberg, P. L., Venegas, A., Tse, R. & Sheetz, M. P. Selective regulation of integrin–cytoskeleton interactions by the tyrosine kinase Src. Nature Cell Biol. 1, 200–206 (1999).

    Article  CAS  Google Scholar 

  29. Chicurel, M. E., Chen, C. S. & Ingber, D. E. Cellular control lies in the balance of forces. Curr. Opin. Cell Biol. 10, 232–239 (1998).

    Article  CAS  Google Scholar 

  30. Finer, J. T., Mehta, A. D. & Spudich, J. A. Characterization of single actin–myosin interactions . Biophys. J. 68, 291S– 296S (1995).

    Article  CAS  Google Scholar 

  31. Benoit, M., Gabriel, D., Gerish, G. & Gaub, H. E. Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nature Cell Biol. 2, 313–317 (2000).

    Article  CAS  Google Scholar 

  32. Oberhauser, A. F., Marszalek, P. E., Erickson, H. P. & Fernandez, J. M. The molecular elasticity of the ECM protein tenascin. Nature 393, 181–185 (1998).

    Article  CAS  Google Scholar 

  33. Carrion-Vazquez, M. et al. Mechanical and chemical unfolding of a single protein: a comparison . Proc. Natl Acad. Sci. USA 96, 3694– 3699 (1999).

    Article  CAS  Google Scholar 

  34. Bell, G. I. Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978).

    Article  CAS  Google Scholar 

  35. Merkel, R., Nassoy, P., Leung, A., Ritchie, K. & Evans, E. Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53 (1999).

    Article  CAS  Google Scholar 

  36. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 ( 1997).

    Article  CAS  Google Scholar 

  37. Dow, J. A., Clark, P., Connolly, P., Curtis, A. S. & Wilkinson, C. D. Novel methods for the guidance and monitoring of single cells and simple networks in culture. J. Cell Sci. (Suppl.) 8, 55–79 (1987).

    Article  CAS  Google Scholar 

  38. Pelham, R. J. Jr & Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility . Proc. Natl Acad. Sci. USA 94, 13661– 13665 (1997).

    Article  CAS  Google Scholar 

  39. Landau, L. D. & Lifshitz, E. M. Course of Theoretical Physics: Theory of Elasticity. Vol. 7, 2nd edn (Pergamon Press, Oxford, 1970).

    Google Scholar 

  40. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical recipes in FORTRAN. The art of scientific computing. 2nd edn (Cambridge Univ. Press, 1992).

    Google Scholar 

  41. Efron, B. & Tibshirani, R. J. Monographs on Statistics and Applied Probability: An Introduction to the Bootstrap. Vol. 57 (Chapman and Hall, 1993).

    Book  Google Scholar 

  42. Harder, B. A., Hefti, M. A., Eppenberger, H. M. & Schaub, M. C. Differential protein localization in sarcomeric and nonsarcomeric contractile structures of cultured cardiomyocytes. J. Struct. Biol. 122, 162–175 (1998).

    Article  CAS  Google Scholar 

  43. Katz, B. Z. et al. Physical state of the extracellular matrix regulates the structure and molecular composition of cell–matrix adhesions. Mol. Biol. Cell 11, 1047–1060 (2000).

    Article  CAS  Google Scholar 

  44. Levenberg, S., Katz, B. Z., Yamada, K. M. & Geiger, B. Long-range and selective autoregulation of cell–cell or cell–matrix adhesions by cadherin or integrin ligands. J. Cell Sci. 111, 347–357 (1998).

    CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank E. Zamir and E. Moses for illuminating discussions and technical assistance. This study was supported by the Israel Science Foundation, administrated by the Israel Academy of Science and the Minerva Foundation. B.G. holds the E. Neter chair for Cell and Tumor Biology. L.A. is incumbent of the Dorothy and Patrick Gorman Professorial chair of Biological Ultrastructure. U.S.S. was supported by the Minerva Foundation. A. B. holds the J. Moss chair of Biomedical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Geiger.

Supplementary information

Movie 1

Two beating cardiac myocytes on the micropatterned elastomer. Beating is reconstructed from pictures acquired either in the contracted or the relaxed phase. The border between patterned and non-patterned elastomer can be seen in the lower part of the picture. (MOV 292 kb)

Movie 2

A cardiac myocyte plated on the micropatterned elastic substrate. Reconstruction from pictures acquired sequentially either in the relaxed or the contracted phase. White crosses indicate regions of contraction; black cross in the upper left shows a non-disturbed location. (MOV 809 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balaban, N., Schwarz, U., Riveline, D. et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3, 466–472 (2001). https://doi.org/10.1038/35074532

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35074532

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing