Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels

Abstract

Acute modulation of P/Q-type (α1A) calcium channels by neuronal activity-dependent changes in intracellular Ca2+ concentration may contribute to short-term synaptic plasticity1,2,3, potentially enriching the neurocomputational capabilities of the brain4,5. An unconventional mechanism for such channel modulation has been proposed6,7 in which calmodulin (CaM) may exert two opposing effects on individual channels, initially promoting (‘facilitation’) and then inhibiting (‘inactivation’) channel opening. Here we report that such dual regulation arises from surprising Ca2+-transduction capabilities of CaM. First, although facilitation and inactivation are two competing processes, both require Ca2+-CaM binding to a single ‘IQ-like’ domain on the carboxy tail of α1A8; a previously identified ‘CBD’ CaM-binding site6,7 has no detectable role. Second, expression of a CaM mutant with impairment of all four of its Ca2+-binding sites (CaM1234) eliminates both forms of modulation. This result confirms that CaM is the Ca2+ sensor for channel regulation, and indicates that CaM may associate with the channel even before local Ca2+ concentration rises. Finally, the bifunctional capability of CaM arises from bifurcation of Ca2+ signalling by the lobes of CaM: Ca2+ binding to the amino-terminal lobe selectively initiates channel inactivation, whereas Ca2+ sensing by the carboxy-terminal lobe induces facilitation. Such lobe-specific detection provides a compact means to decode local Ca2+ signals in two ways, and to separately initiate distinct actions on a single molecular complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Facilitation and inactivation in P/Q-type Ca2+ channels.
Figure 2: Structural determinants of facilitation and inactivation.
Figure 3: CaM binding to α1A IQ site.
Figure 4: Selective initiation of facilitation and inactivation by different lobes of CaM.
Figure 5: Decoding local Ca2+ concentrations ([Ca2+]).

Similar content being viewed by others

References

  1. Borst, J. G. & Sakmann, B. Facilitation of presynaptic calcium currents in the rat brainstem. J. Physiol. (Lond.) 513, 149–155 (1998).

    Article  CAS  Google Scholar 

  2. Cuttle, M. F., Tsujimoto, T., Forsythe, I. D. & Takahashi, T. Facilitation of the presynaptic calcium current at an auditory synapse in rat brainstem. J. Physiol. (Lond.) 512, 723–729 (1998).

    Article  CAS  Google Scholar 

  3. Forsythe, I. D., Tsujimoto, T., Barnes-Davies, M., Cuttle, M. & Takahashi, T. Inactivation of presynaptic calcium current contributes to synaptic depression at a fast central synapse. Neuron 20, 797–807 (1998).

    Article  CAS  Google Scholar 

  4. Abbott, L. F., Varela, J. A., Sen, K. & Nelson, S. B. Synaptic depression and cortical gain control. Science 175, 220–224 (1997).

    Google Scholar 

  5. Tsodyks, M. V. & Markram, H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl Acad. Sci. USA 94, 719–723 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Lee, A. et al. Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature 399, 155–159 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Lee, A., Scheuer, T. & Catterall, W. A. Ca2+/calmodulin-dependent facilitation and inactivation of P/Q-type Ca2+ channels. J. Neurosci. 20, 6830–6838 (2000).

    Article  CAS  Google Scholar 

  8. Peterson, B. Z., DeMaria, C. D., Adelman, J. P. & Yue, D. T. Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels. Neuron 22, 549–558 (1999).

    Article  CAS  Google Scholar 

  9. Chao, S. H., Suzuki, Y., Zysk, J. R. & Cheung, W. Y. Activation of calmodulin by various metal cations as a function of ionic radius. Mol. Pharmacol. 26, 75–82 (1984).

    CAS  PubMed  Google Scholar 

  10. Colecraft, H. M., Patil, P. G. & Yue, D. T. Differential occurrence of reluctant openings in G-protein-inhibited N- and P/Q-type calcium channels. J. Gen. Physiol. 115, 175–192 (2000).

    Article  CAS  Google Scholar 

  11. Zuhlke, R. D., Pitt, G. S., Deisseroth, K., Tsien, R. W. & Reuter, H. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399, 159–162 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Zuhlke, R. D., Pitt, G. S., Tsien, R. W. & Reuter, H. Ca2+-sensitive inactivation and facilitation of L-type Ca2+ channels both depend on specific amino acid residues in a consensus calmodulin-binding motif in the α1C subunit. J. Biol. Chem. 275, 21121–21129 (2000).

    Article  CAS  Google Scholar 

  13. Qin, N., Olcese, R., Bransby, M., Lin, T. & Birnbaumer, L. Ca2+-induced inhibition of the cardiac Ca2+ channel depends on calmodulin. Proc. Natl Acad. Sci. USA 96, 2435–2438 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Peterson, B. Z. et al. Critical determinants of Ca2+-dependent inactivation within an EF-hand motif of L-type Ca2+ channels. Biophys. J. 78, 1906–1920 (2000).

    Article  ADS  CAS  Google Scholar 

  15. Houdusse, A. & Cohen, C. Target sequence recognition by the calmodulin superfamily: implications from light chain binding to the regulatory domain of scallop myosin. Proc. Natl Acad. Sci. USA 92, 10644–10647 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Elshorst, B. et al. NMR solution structure of a complex of calmodulin with a binding peptide of the Ca2+ pump. Biochemistry 38, 12320–12332 (1999).

    Article  CAS  Google Scholar 

  17. Ehlers, M. D., Zhang, S., Bernhardt, J. P. & Huganir, R. L. Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell 84, 745–755 (1996).

    Article  CAS  Google Scholar 

  18. Putkey, J. A., Sweeney, H. L. & Campbell, S. T. Site-directed mutation of the trigger calcium-binding sites in cardiac troponin C. J. Biol. Chem. 264, 12370–12378 (1989).

    CAS  PubMed  Google Scholar 

  19. Mori, M. et al. Novel interaction of the voltage-dependent sodium channel (VDSC) with calmodulin: does VDSC acquire calmodulin-mediated Ca2+-sensitivity? Biochemistry 39, 1316–1323 (2000).

    Article  CAS  Google Scholar 

  20. Keen, J. E. et al. Domains responsible for constitutive and Ca2+-dependent interactions between calmodulin and small conductance Ca2+-activated potassium channels. J. Neurosci. 19, 8830–8838 (1999).

    Article  CAS  Google Scholar 

  21. Fanger, C. M. et al. Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCal. J. Biol. Chem. 274, 5746–5754 (1999).

    Article  CAS  Google Scholar 

  22. Erickson, M. G. & Yue, D. T. FRET reveals tethering of calmodulin to calcium channel complex in single living cells. Biophys. J. 80, 196a (2001).

    Google Scholar 

  23. Rodney, G. G. et al. Calcium binding to calmodulin leads to an N-terminal shift in its binding site on the ryanodine receptor. J. Biol. Chem. 276, 2069–2074 (2001).

    Article  CAS  Google Scholar 

  24. Barth, A., Martin, S. R. & Bayley, P. M. Specificity and symmetry in the interaction of calmodulin domains with the skeletal muscle myosin light chain kinase target sequence. J. Biol. Chem. 273, 2174–2183 (1998).

    Article  CAS  Google Scholar 

  25. Kink, J. A. et al. Mutations in paramecium calmodulin indicate functional differences between the C-terminal and N-terminal lobes in vivo. Cell 62, 165–174 (1990).

    Article  CAS  Google Scholar 

  26. Ohya, Y. & Botstein, D. Diverse essential functions revealed by complementing yeast calmodulin mutants. Science 263, 963–966 (1994).

    Article  ADS  CAS  Google Scholar 

  27. Sutton, K. G., McRory, J. E., Guthrie, H., Murphy, T. H. & Snutch, T. P. P/Q-type calcium channels mediate the activity dependent feedback of syntaxin-1A. Nature 401, 800–804 (1999).

    Article  ADS  CAS  Google Scholar 

  28. Kincaid, R. L., Billingsley, M. L. & Vaughan, M. Preparation of fluorescent, cross-linking, and biotinylated calmodulin derivatives and their use in studies of calmodulin-activated phosphodiesterase and protein phosphatase. Methods Enzymol. 159, 605–626 (1988).

    Article  CAS  Google Scholar 

  29. Patil, P. G., Brody, D. L. & Yue, D. T. Preferential closed-state inactivation of neuronal calcium channels. Neuron 20, 1027–1038 (1998).

    Article  CAS  Google Scholar 

  30. Song, L. S., Sham, J. S., Stern, M. D., Lakatta, E. G. & Chang, H. Direct measurement of SR release flux by tracking ‘Ca2+ spikes’ in rat cardiac myocytes. J. Physiol. (Lond.) 512, 677–691 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Agnew, C. Chen, H. Colecraft, M. Erickson, S. Takahashi, H. Agler and E. Sobie for discussion; B. Peterson for initial attempts to detect P/Q-type channel facilitation; and T. Snutch for the gift of human α1A clone. This work was supported by an NIH NRSA fellowship (C.D.D.) and grants from the NIH (D.T.Y.) and NNI (T.W.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Yue.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeMaria, C., Soong, T., Alseikhan, B. et al. Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature 411, 484–489 (2001). https://doi.org/10.1038/35078091

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35078091

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing