Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Apaf-1 is a transcriptional target for E2F and p53

Abstract

Loss of function of the retinoblastoma protein, pRB, leads to lack of differentiation, hyperproliferation and apoptosis. Inactivation of pRB results in deregulated E2F activity, which in turn induces entry to S-phase and apoptosis. Induction of apoptosis by either the loss of pRB or the deregulation of E2F activity occurs via both p53-dependent and p53-independent mechanisms. The mechanism by which E2F induces apoptosis is still unclear. Here we show that E2F1 directly regulates the expression of Apaf-1, the gene for apoptosis protease-activating factor 1. These results provide a direct link between the deregulation of the pRB pathway and apoptosis. Furthermore, because the pRB pathway is functionally inactivated in most cancers, the identification of Apaf-1 as a transcriptional target for E2F might explain the increased sensitivity of tumour cells to chemotherapy. We also show that, independently of the pRB pathway, Apaf-1 is a direct transcriptional target of p53, suggesting that p53 might sensitize cells to apoptosis by increasing Apaf-1 levels.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: E2F1 induces Apaf-1 mRNA and protein accumulation.
Figure 4: E2F1 induces caspase activation, cytochrome c release and Apaf-1-dependent apoptosis.
Figure 2: p53 induces Apaf-1 mRNA and protein.
Figure 3: p53 and E2F1 activate the Apaf-1 promoter.
Figure 5: Increased levels of Apaf-1 expression in Rb−/− embryos.
Figure 6

Similar content being viewed by others

References

  1. Sherr, C. J. Cancer cell cycles. Science 274, 1672–1677 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Lipinski, M. M. & Jacks, T. The retinoblastoma gene family in differentiation and development. Oncogene 18, 7873–7882 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Müller, H. & Helin, K. The E2F transcription factors: key regulators of cell proliferation. Biochim. Biophys. Acta 1470, M1–M12 (2000).

    PubMed  Google Scholar 

  6. Wu, X. & Levine, A. J. p53 and E2F-1 cooperate to mediate apoptosis. Proc. Natl Acad. Sci. USA 91, 3602–3606 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Qin, X.-Q., Livingston, D. M., Kaelin, W. G. & Adams, P. Deregulated E2F1 expression leads to S-phase entry and p53-mediated apoptosis. Proc. Natl Acad. Sci. USA 91, 10918–10922 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kowalik, T. F., DeGregori, J., Schwarz, J. K. & Nevins, J. R. E2F1 overexpression in quiescent fibroblasts leads to induction of cellular DNA synthesis and apoptosis. J. Virol. 69, 2491–2500 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hsieh, J.-K., Fredersdorf, S., Kouzarides, T., Martin, K. & Lu, X. E2F1-induced apoptosis requires DNA binding but not transactivation and is inhibited by the retinoblastoma protein through direct interaction. Genes Dev. 11, 1840–1852 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Nip, J. et al. E2F-1 cooperates with topoisomerase II inhibition and DNA damage to selectively augment p53-independent apoptosis. Mol. Cell. Biol. 17, 1049–1056 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Phillips, A. C., Bates, S., Ryan, K. M., Helin, K. & Vousden, K. Induction of DNA synthesis and apoptosis are separable functions of E2F-1. Genes Dev. 11, 1853–1863 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Holmberg, C., Helin, K., Sehested, M. & Karlström, O. E2F-1 induced p53-independent apoptosis in transgenic mice. Oncogene 17, 143–155 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Vigo, E. et al. CDC25A phosphatase is a target of E2F and is required for efficient E2F-1 induced S phase. Mol. Cell. Biol. 19, 6379–6395 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Irwin, M. et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407, 645–648 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Lissy, N. A., Davis, P. K., Irwin, M., Kaelin W. G., Jr & Dowdy, S. F. A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature 407, 642–645 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Tsai, K. Y. et al. Mutation of E2F1 supresses apoptosis and inappropriate S-phase entry and extends survival of Rb-deficient mouse embryos. Mol. Cell 2, 293–304 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Bates, S. et al. p14ARF links the tumour suppressors RB and p53. Nature 395, 124–125 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Sherr, C. J. Tumor surveillance via ARF-p53 pathway. Genes Dev. 12, 2984–2991 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Jost, C. A., Marin, M. C. & Kaelin, W. G. p73 is a human p53-related protein that can induce apoptosis. Nature 389, 191–194 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Kessis, T. D. et al. Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage. Proc. Natl Acad. Sci. USA 90, 3988–3992 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hengartner, M. O. The biochemistry of apoptosis. Nature 407, 770–776 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Cecconi, F., Alvarez-Bolado, G., Meyer, B. M., Roth, K. A. & Gruss, P. Apaf-1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94, 727–737 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Yoshida, H. et al. Apaf-1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94, 739–750 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Soengas, M. S. et al. Apaf-1 and Caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284, 156–159 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Macleod, K. F., Hu, Y. & Jacks, T. Loss of Rb activates both p53-dependent and independent cell death pathways in the developing mouse nervous system. EMBO J. 15, 6178–6188 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rodriguez, J. & Lazebnik, Y. Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev. 13, 3179–3184 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hausmann, G. et al. Pro-apoptotic apoptosis protease-activating factor 1 (Apaf-1) has a cytoplasmic localization distinct from Bcl-2 or BclXl. J. Cell Biol. 149, 623–633 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Perkins, C., Kim, C. N., Fang, G. & Bhalla, K. N. Overexpression of Apaf-1 promotes apoptosis of untreated and paclitaxel- or etoposide-treated HL-60 cells. Cancer Res. 58, 4561–4566 (1998).

    CAS  PubMed  Google Scholar 

  29. Evan, G. & Littlewood, T. A matter of life or cell death. Science 281, 1317–1322 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Phillips, A. C., Ernst, M. K., Bates, S., Rice, N. R. & Vousden, K. H. E2F-1 potentiates cell death by blocking antiapoptotic signaling pathways. Mol. Cell 4, 771–781 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, H. S., Postigo, A. A. & Dean, D. C. Active transcriptional repression by Rb-E2F complex mediates G1 arrest triggered by p16INK4A, TGFβ and contact inhibition. Cell 97, 53–61 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Lasorella, A., Noseda, M., Beyna, M., Yokota, Y. & Iavarone, A. Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature 407, 592–598 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Soengas, M. S. et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409, 207–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Zhou, L., Song, Z., Tittel, J. & Steller, H. HAC-1, a Drosophila homolog of APAF-1 and CED-4, functions in developmental- and radiation-induced apoptosis. Mol. Cell 4, 745–755 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Ohtani, K., DeGregori, J. & Nevins, J. R. Regulation of the cyclin E gene by transcription factor E2F1. Proc. Natl Acad. Sci. USA 92, 12146–12150 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fearnhead, H. O. et al. Oncogene-dependent apoptosis is mediated by caspase-9. Proc. Natl Acad. Sci. USA 95, 13664–13669 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Goldstein, J. C., Waterhouse, N. J., Juin, P., Evan, G. I. & Green, D. R. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nature Cell Biol. 2, 156–162 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Pelton, R. W., Dickinson, M. E., Moses, H. L. & Hogan, B. L. In situ hybridization analysis of TGF-β3 expression during mouse development: comparative studies with TGF-β1 and -β2. Development 110, 600–620 (1990).

    Google Scholar 

Download references

Acknowledgements

We wish to dedicate this work to the memory of M.C.M.'s late husband Pierluigi Molinari. We thank E. Prosperini for technical assistance, T. Jacks for the Rb+/− mice, Y. Lazebnik and D. Huang for anti-Apaf-1 antibodies, K. Vousden for p53 expression constructs and RKO cells, J. R. Nevins for the cyclin E1 reporter construct, A. Bulfone and C. Gattuso for suggestions concerning in situ hybridization, E. Grassilli for discussions and A. Fattaey for discussions and for critical reading of the manuscript. This work was supported by grants from AIRC, FIRC, CNR, The Italian Health Ministery, AICR and the EU's TMR programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Helin.

Supplementary information

Figure S1 Sequence of the human APAF-1 promoter. The nucleotide sequence from -871 to +208 bp is shown.

Figure S2 Release of cytochrome c after activation of ERE2F1 with OHT, in primary wild-type or Apaf-1-/-MEFs. (PDF 830 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moroni, M., Hickman, E., Denchi, E. et al. Apaf-1 is a transcriptional target for E2F and p53. Nat Cell Biol 3, 552–558 (2001). https://doi.org/10.1038/35078527

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35078527

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing