Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Morphogen gradient interpretation

Abstract

A morphogen gradient is an important concept in developmental biology, because it describes a mechanism by which the emission of a signal from one part of an embryo can determine the location, differentiation and fate of many surrounding cells. The value of this idea has been clear for over half a century, but only recently have experimental systems and methods of analysis progressed to the point where we begin to understand how a cell can sense and respond to tiny changes in minute concentrations of extracellular signalling factors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphogen action during development in Drosophila.
Figure 2: Examples of morphogen action during development in Xenopus.
Figure 3: Two possible mechanisms of concentration-dependent transcription.
Figure 4: Concepts of morphogen gradient interpretation.

Similar content being viewed by others

References

  1. Wolpert, L. Positional information revisited. Development (Suppl.) 3–12 (1989).

  2. Cooke, J. Morphogens in vertebrate development: how do they work? BioEssays 17, 93–96 (1995).

    Article  CAS  Google Scholar 

  3. Lawrence, P. A. & Struhl, G. Morphogens, compartments, and pattern: lessons from Drosophila? Cell 85, 951–961 (1996).

    Article  CAS  Google Scholar 

  4. Neumann, C. & Cohen, S. Morphogens and pattern formation. BioEssays 19, 721–729 (1997).

    Article  CAS  Google Scholar 

  5. Teleman, A. A., Strigini, M. & Cohen, S. M. Shaping morphogen gradients. Cell 105, 559–562 (2001).

    Article  CAS  Google Scholar 

  6. Podos, S. D. & Ferguson, E. L. Morphogen gradients: new insights from DPP. Trends Genet. 15, 396–402 (1999).

    Article  CAS  Google Scholar 

  7. De Robertis, E. M., Larrain, J., Oelgeschlager, M. & Wessely, O. The establishment of Spemann's organizer and patterning of the vertebrate embryo. Nature Rev. Genet. 1, 171–181 (2000).

    Article  CAS  Google Scholar 

  8. Driever, W. & Nusslein-Volhard, C. The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54, 95–104 (1988).

    Article  CAS  Google Scholar 

  9. Entchev, E. V., Schwabedissen, A. & Gonzalez-Gaitan, M. Gradient formation of the TGF-β homolog Dpp. Cell 103, 981–991 (2000).

    Article  CAS  Google Scholar 

  10. Teleman, A. A. & Cohen, S. M. Dpp gradient formation in the Drosophila wing imaginal disc. Cell 103, 971–980 (2000).

    Article  CAS  Google Scholar 

  11. Dubois, L., Lecourtois, M., Alexandre, C., Hirst, E. & Vincent, J. P. Regulated endocytic routing modulates wingless signaling in Drosophila embryos. Cell 105, 613–624 (2001).

    Article  CAS  Google Scholar 

  12. Hogan, B. L., Thaller, C. & Eichele, G. Evidence that Hensen's node is a site of retinoic acid synthesis. ature 359, 237–241 (1992).

    ADS  CAS  Google Scholar 

  13. Slack, J. M. W. Inducing factors in Xenopus early embryos. Curr. Biol. 4, 116–126 (1994).

    Article  CAS  Google Scholar 

  14. Porter, J. A., Young, K. E. & Beachy, P. A. Cholesterol modification of hedgehog signaling proteins in animal development. Science 274, 255–259 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Chen, Y. & Schier, A. F. The zebrafish Nodal signal Squint functions as a morphogen. Nature 411, 607–610 (2001).

    Article  ADS  CAS  Google Scholar 

  16. McDowell, N., Zorn, A. M., Crease, D. J. & Gurdon, J. B. Activin has a direct long range signalling activity and can form a concentration gradient by diffusion. Curr. Biol. 7, 671–681 (1997).

    Article  CAS  Google Scholar 

  17. Gurdon, J. B., Harger, P., Mitchell, A. & Lemaire, P. Activin signalling and response to a morphogen gradient. Nature 371, 487–492 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Papin, C. & Smith, J. C. Gradual refinement of activin-induced thresholds requires protein synthesis. Dev. Biol. 217, 166–172 (2000).

    Article  CAS  Google Scholar 

  19. Ferguson, E. L. & Anderson, K. V. Decapentaplegic acts as a morphogen to organize dorsal–ventral pattern in the Drosophila embryo. Cell 71, 451–461 (1992).

    Article  CAS  Google Scholar 

  20. Lecuit, T. et al. Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing. Nature 381, 387–393 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Wharton, K. A., Ray, R. P. & Gelbart, W. M. An activity gradient of decapentaplegic is necessary for the specification of dorsal pattern elements in the Drosophila embryo. Development 117, 807–822 (1993).

    CAS  PubMed  Google Scholar 

  22. Wolpert, L. Principles of Development 399–401 (Oxford Univ. Press, Oxford, 1998).

    Google Scholar 

  23. Gurdon, J. B. et al. Single cells can sense their position in a morphogen gradient. Development 126, 5309–5317 (1999).

    CAS  PubMed  Google Scholar 

  24. Chen, Y. & Struhl, G. Dual roles for patched in sequestering and transducing Hedgehog. Cell 87, 553–563 (1996).

    Article  CAS  Google Scholar 

  25. Nellen, D., Burke, R., Struhl, G. & Basler, K. Direct and long-range action of a DPP morphogen gradient. Cell 85, 357–368 (1996).

    Article  CAS  Google Scholar 

  26. Neul, J. L. & Ferguson, E. L. Spatially restricted activation of the SAX receptor by SCW modulates DPP/TKV signaling in Drosophila dorsal–ventral patterning. Cell 95, 483–494 (1998).

    Article  CAS  Google Scholar 

  27. Nguyen, M., Park, S., Marques, G. & Arora, K. Interpretation of a BMP activity gradient in Drosophila embryos depends on synergistic signaling by two type I receptors, SAX and TKV. Cell 95, 495–506 (1998).

    Article  CAS  Google Scholar 

  28. Rulifson, E. J., Wu, C. H. & Nusse, R. Pathway specificity by the bifunctional receptor frizzled is determined by affinity for wingless. Mol. Cell 6, 117–126 (2000).

    Article  CAS  Google Scholar 

  29. Chen, C. M. & Struhl, G. Wingless transduction by the Frizzled and Frizzled2 proteins of Drosophila. Development 126, 5441–5452 (1999).

    CAS  PubMed  Google Scholar 

  30. Dyson, S. & Gurdon, J. B. The interpretation of position in a morphogen gradient as revealed by occupancy of activin receptors. Cell 93, 557–568 (1998).

    Article  CAS  Google Scholar 

  31. Hemmati-Brivanlou, A. & Melton, D. A. A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature 359, 609–614 (1992).

    Article  ADS  CAS  Google Scholar 

  32. Valitutti, S., Muller, S., Cella, M., Padovan, E. & Lanzavecchia, A. Serial triggering of many T-cell receptors by a few peptide–MHC complexes. Nature 375, 148–151 (1995).

    Article  ADS  CAS  Google Scholar 

  33. Gurdon, J. B., Dyson, S. & St Johnston, D. Cells' perception of position in a concentration gradient. Cell 95, 159–162 (1998).

    Article  CAS  Google Scholar 

  34. Zecca, M., Basler, K. & Struhl, G. Direct and long-range action of a wingless morphogen gradient. Cell 87, 833–844 (1996).

    Article  CAS  Google Scholar 

  35. Graff, J. M., Bansal, A. & Melton, D. A. Xenopus mad proteins transduce distinct subsets of signals for the TGFβ superfamily. Cell 85, 479–487 (1996).

    Article  CAS  Google Scholar 

  36. Shimizu, K. & Gurdon, J. B. A quantitative analysis of signal transduction from activin receptor to nucleus and its relevance to morphogen gradient interpretation. Proc. Natl Acad. Sci. USA 96, 6791–6796 (1999).

    Article  ADS  CAS  Google Scholar 

  37. Faure, S., Lee, M. A., Keller, T., ten Dijke, P. & Whitman, M. Endogenous patterns of TGFβ superfamily signaling during early Xenopus development. Development 127, 2917–2931 (2000).

    CAS  Google Scholar 

  38. Dorfman, R. & Shilo, B. Z. Biphasic activation of the BMP pathway patterns the Drosophila embryonic dorsal region. Development 128, 965–972 (2001).

    CAS  PubMed  Google Scholar 

  39. Pages, F. & Kerridge, S. Morphogen gradients. A question of time or concentration? Trends Genet. 16, 40–44 (2000).

    Article  CAS  Google Scholar 

  40. Lecuit, T. & Cohen, S. M. Dpp receptor levels contribute to shaping the Dpp morphogen gradient in the Drosophila wing imaginal disc. Development 125, 4901–4907 (1998).

    CAS  PubMed  Google Scholar 

  41. Cadigan, K. M., Fish, M. P., Rulifson, E. J. & Nusse, R. Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing. Cell 93, 767–777 (1998).

    Article  CAS  Google Scholar 

  42. Jessell, T. M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nature Rev. Genet. 1, 20–29 (2000).

    Article  CAS  Google Scholar 

  43. Briscoe, J., Chen, Y., Jessell, T. M. & Struhl, G. A hedgehog-insensitive form of patched provides evidence for direct long-range morphogen activity of sonic hedgehog in the neural tube. Mol. Cell 7, 1279–1291 (2001).

    Article  CAS  Google Scholar 

  44. Green, J. B., New, H. V. & Smith, J. C. Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm. Cell 71, 731–739 (1992).

    Article  CAS  Google Scholar 

  45. Gritsman, K., Talbot, W. S. & Schier, A. F. Nodal signaling patterns the organizer. Development 127, 921–932 (2000).

    CAS  PubMed  Google Scholar 

  46. Gurdon, J. B., Mitchell, A. & Mahony, D. Direct and continuous assessment by cells of their position in a morphogen gradient. Nature 376, 520–521 (1995).

    Article  ADS  CAS  Google Scholar 

  47. Mannervik, M., Nibu, Y., Zhang, H. & Levine, M. Transcriptional coregulators in development. Science 284, 606–609 (1999).

    Article  CAS  Google Scholar 

  48. Ashe, H. L., Mannervik, M. & Levine, M. Dpp signaling thresholds in the dorsal ectoderm of the Drosophila embryo. Development 127, 3305–3312 (2000).

    CAS  PubMed  Google Scholar 

  49. Affolter, M., Marty, T., Vigano, M. A. & Jazwinska, A. Nuclear interpretation of Dpp signaling in Drosophila. EMBO J. 20, 3298–3305 (2001).

    Article  CAS  Google Scholar 

  50. Klein, T. & Arias, A. M. The vestigial gene product provides a molecular context for the interpretation of signals during the development of the wing in Drosophila. Development 126, 913–925 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to the authors of original work not cited. Owing to space limitations, we cited review articles where possible. Our work is supported by the Cancer Research Campaign and the European Community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Gurdon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurdon, J., Bourillot, PY. Morphogen gradient interpretation. Nature 413, 797–803 (2001). https://doi.org/10.1038/35101500

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35101500

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing