Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Perceptual learning without perception

Abstract

The brain is able to adapt rapidly and continually to the surrounding environment, becoming increasingly sensitive to important and frequently encountered stimuli1,2,3,4. It is often claimed that this adaptive learning is highly task-specific, that is, we become more sensitive to the critical signals in the tasks we attend to5,6,7,8,9,10,11,12,13,14,15. Here, we show a new type of perceptual learning, which occurs without attention, without awareness and without any task relevance. Subjects were repeatedly presented with a background motion signal so weak that its direction was not visible; the invisible motion was an irrelevant background to the central task that engaged the subject's attention. Despite being below the threshold of visibility and being irrelevant to the central task, the repetitive exposure improved performance specifically for the direction of the exposed motion when tested in a subsequent suprathreshold test. These results suggest that a frequently presented feature sensitizes the visual system merely owing to its frequency, not its relevance or salience.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General procedure and exposure stage.
Figure 2: Test stages in experiment 1.
Figure 3: Test stages in experiment 2.
Figure 4: Test stages in experiment 3.

Similar content being viewed by others

References

  1. Gilbert, C. D. Plasticity in visual perception and physiology. Curr. Opin. Neurobiol. 6, 269–274 (1996).

    Article  CAS  Google Scholar 

  2. Vaina, L. M., Belliveau, J. W., des Roziers, E. B. & Zeffiro, T. A. Neural systems underlying learning and representation of global motion. Proc. Natl Acad. Sci. USA 95, 12657–12662 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Grossberg, S. How does the cerebral cortex work? Learning, attention, and grouping by the laminar circuits of visual cortex. Spat. Vis. 12, 163–185 (1999).

    Article  CAS  Google Scholar 

  4. Zohary, E., Celebrini, S., Britten, K. H. & Newsome, W. T. Neuronal plasticity that underlies improvement in perceptual performance. Science 263, 1289–1292 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Ramachandran, V. S. & Braddick, O. Orientation-specific learning in stereopsis. Perception 2, 371–376 (1973).

    Article  CAS  Google Scholar 

  6. Fiorentini, A. & Berardi, N. Perceptual learning specific for orientation and spatial frequency. Nature 287, 43–44 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Ball, K. & Sekuler, R. Direction-specific improvement in motion discrimination. Vision Res. 27, 953–965 (1987).

    Article  CAS  Google Scholar 

  8. Shiu, L. P. & Pashler, H. Improvement in line orientation discrimination is retinally local but dependent on cognitive set. Percept. Psychophys. 52, 582–588 (1992).

    Article  CAS  Google Scholar 

  9. Karni, A. & Sagi, D. The time course of learning a visual skill. Nature 365, 250–252 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Fahle, M. & Edelman, S. Long-term learning in vernier acuity: effects of stimulus orientation, range and of feedback. Vision Res. 33, 397–412 (1993).

    Article  CAS  Google Scholar 

  11. Ahissar, M. & Hochstein, S. Attentional control of early perceptual learning. Proc. Natl Acad. Sci. USA 90, 5718–5722 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Sagi, D. & Tanne, D. Perceptual learning: learning to see. Curr. Opin. Neurobiol. 4, 195–199 (1994).

    Article  CAS  Google Scholar 

  13. Ito, M., Westheimer, G. & Gilbert, C. D. Attention and perceptual learning modulate contextual influences on visual perception. Neuron 20, 1191–1197 (1998).

    Article  CAS  Google Scholar 

  14. Crist, R. E., Li, W. & Gilbert, C. D. Learning to see: experience and attention in primary visual cortex. Nature Neurosci. 4, 519–525 (2001).

    Article  CAS  Google Scholar 

  15. Koyama, S. & Watanabe, T. Different mechanisms for the learning of motion detection vs. the learning of motion direction discrimination. J. Vis. (Suppl.) (in the press).

  16. Newsome, W. T. & Pare, E. B. A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J. Neurosci. 8, 2201–2211 (1988).

    Article  CAS  Google Scholar 

  17. Joseph, J. S., Chun, M. M. & Nakayama, K. Attentional requirements in a ‘preattentive’ feature search task. Nature 387, 805–807 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Treue, S. & Maunsell, J. H. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382, 539–541 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Watanabe, T. et al. Task-dependent influences of attention on the activation of human primary visual cortex. Proc. Natl Acad. Sci. USA 95, 11489–11492 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Watanabe, T. et al. Attention-regulated activity in human primary visual cortex. J. Neurophysiol. 79, 2218–2221 (1998).

    Article  CAS  Google Scholar 

  21. Somers, D. C., Dale, A. M., Seiffert, A. E. & Tootell, R. B. Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. Proc. Natl Acad. Sci. USA 96, 1663–1668 (1999).

    Article  ADS  CAS  Google Scholar 

  22. Gandhi, S. P., Heeger, D. J. & Boynton, G. M. Spatial attention affects brain activity in human primary visual cortex. Proc. Natl Acad. Sci. USA 96, 3314–3319 (1999).

    Article  ADS  CAS  Google Scholar 

  23. Nakayama, K. & Shimojo, S. Experiencing and perceiving visual surfaces. Science 257, 1357–1363 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Saffran, J. R., Aslin, R. N. & Newport, E. L. Statistical learning by 8-month-old infants. Science 274, 1926–1928 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Albert, M. K. & Hoffman, D. D. The generic-viewpoint assumption and illusory contours. Perception 29, 303–312 (2000).

    CAS  PubMed  Google Scholar 

  26. Slemmer, J. A., Kirkham, N. G. & Johnson, S. P. Visual statistical learning in infancy. J. Vis. (Suppl.) (in the press).

  27. Bar, M. & Biederman, I. Subliminal visual priming. Psychol. Sci. 9, 464–469 (1998).

    Article  Google Scholar 

  28. Chun, M. M. Contextual cueing of visual attention. Trends Cogn. Sci. 4, 170–178 (2000).

    Article  CAS  Google Scholar 

  29. Barlow, H. B. in Vision: Coding and Efficiency (ed. Blakemore, C.) (Cambridge Univ. Press, Cambridge, 1989).

    Google Scholar 

Download references

Acknowledgements

We thank M. Ahissar, P. Cavanagh, S. Hochstein, W. T. Newsome, R. Raizada and R. Sekuler for their comments on this or related study. This work was supported by an NSF (SBES, HCP) grant to T.W. and by Chiba University and JSPS fellowship to Y.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeo Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, T., Náñez, J. & Sasaki, Y. Perceptual learning without perception. Nature 413, 844–848 (2001). https://doi.org/10.1038/35101601

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35101601

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing