Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inactivation of muscle chloride channel by transposon insertion in myotonic mice

Abstract

MYOTONIA (stiffness and impaired relaxation of skeletal muscle) is a symptom of several diseases caused by repetitive firing of action potentials in muscle membranes1. Purely myotonic human diseases are dominant myotonia congenita (Thomsen) and recessive generalized myotonia (Becker), whereas myotonic dystrophy is a systemic disease. Muscle hyperexcitability was attributed to defects in sodium channels2,3 and/or to a decrease in chloride conductance (in Becker's myotonia4 and in genetic animal models5–10). Experimental blockage of Cl conductance (normally 70–85% of resting conductance in muscle11) in fact elicits myotonia1,9. ADR (ref. 12) mice are a realistic animal model5–7,12–18 for recessive autosomal myotonia. In addition to Cl conductance5, many other parameters6,12,16 are changed in muscles of homozygous animals. We have now cloned the major mammalian skeletal muscle chloride channel (C1C-1)19. Here wereport that in ADR mice a transposon of the ETn family20–23 has inserted into the corresponding gene, destroying its coding potential for several membrane-spanning domains. Together with the lack of recombination between the Clc-1 gene and the adr locus, this strongly suggests a lack of functional chloride channels as the primary cause of mouse myotonia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rüdel, R. & Lehmann-Horn, F. Physiol. Rev. 65, 310–356 (1985).

    Article  Google Scholar 

  2. Iaizzo, P. A. et al. Neuromusc. Disord. 1, 47–53 (1991).

    Article  CAS  Google Scholar 

  3. Franke, C. et al. Muscle Nerve 14, 762–770 (1991).

    Article  CAS  Google Scholar 

  4. Rüdel, R., Ricker, K. & Lehmann-Horn, F. Muscle Nerve 11, 202–211 (1988).

    Article  Google Scholar 

  5. Mehrke, G., Brinkmeier, H., & Jockusch, H. Muscle Nerve 11, 440–446 (1988).

    Article  CAS  Google Scholar 

  6. Jockusch, H. in The Dynamic State of Muscle Fibers (ed. Pette, D.) 429–443 (Walter de Gruyter, New York, 1990).

    Google Scholar 

  7. Rüdel, R. Trends Neurosci. 13, 1–3 (1990).

    Article  Google Scholar 

  8. Lipicky, R. J. & Bryant, S. H. J. gen. Physiol. 50, 89–111 (1966).

    Article  CAS  Google Scholar 

  9. Bryant, S. H. & Morales-Aguilera, A. J. Physiol., Lond. 219, 367–383 (1971).

    Article  CAS  Google Scholar 

  10. Adrian, R. H. & Bryant, S. H. J. Physiol., Lond. 240, 505–515 (1974).

    Article  CAS  Google Scholar 

  11. Bretag, A. H. Physiol. Rev. 67, 618–724 (1987).

    Article  CAS  Google Scholar 

  12. Watkins, W. J. & Watt, D. C. Lab. Anim. 18, 1–6 (1984).

    Article  CAS  Google Scholar 

  13. Reininghaus, J., Füchtbauer, E.-M., Bertram, K. & Jockusch, H. Muscle Nerve 11, 433–439 (1988).

    Article  CAS  Google Scholar 

  14. Füchtbauer, E.-M., Reininghaus, J. & Jocksuch, H. Proc. natn. Acad. Sci. U.S.A. 85, 3880–3884 (1988).

    Article  ADS  Google Scholar 

  15. Brinkmeier, H. & Jockusch, H. Biochem. biophys. Res. Commun. 148, 1383–1389 (1987).

    Article  CAS  Google Scholar 

  16. Jockusch, H., Reininghaus, J., Stuhlfauth, I. & Zippel, M. Eur. J. Biochem. 171, 101–105 (1988).

    Article  CAS  Google Scholar 

  17. Költgen, D., Brinkmeier, H. & Jockusch, H. Muscle Nerve 14, 775–780 (1991).

    Article  Google Scholar 

  18. Jockusch, H., Schenk, S. & Gronemeier, M. Mouse Genome 86, 216 (1990).

    Google Scholar 

  19. Steinmeyer, K., Ortland, C. & Jentsch, T. J. Nature 354, 301–304 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Brûlet, P., Kaghad, M., Xu, Y.-S., Croissant, O. & Jacob, F. Proc. natn. Acad. Sci. U.S.A. 80, 5641–5645 (1983).

    Article  ADS  Google Scholar 

  21. Brûlet, P., Condamine, H. & Jacob, F. Proc. natn. Acad. Sci. U.S.A. 82, 2054–2058 (1985).

    Article  ADS  Google Scholar 

  22. Sonigo, P. et al. Proc. natn. Acad. Sci. U.S.A. 84, 3768–3771 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Shell, B., Szurek, P. & Dunnick, W. Molec. cell. Biol. 7, 1364–1370 (1987).

    Article  CAS  Google Scholar 

  24. Heller, A. H., Eicher, E. M., Hallett, M. & Sidman, R. L. J. Neurosci. 2, 924–933 (1982).

    Article  CAS  Google Scholar 

  25. Neumann, P. & Weber, T. Mouse News Lett. 83, 157 (1989).

    Google Scholar 

  26. Jentsch, T. J., Steinmeyer, K. & Schwarz, G. Nature 348, 510–514 (1990).

    Article  ADS  CAS  Google Scholar 

  27. Conte Camerino, D., De Luca, A., Mambrini, M. & Vrbovà, G. Pflügers Arch. 413, 568–570 (1989).

    Article  CAS  Google Scholar 

  28. Lipicky, R. J., Bryant S. H. & Salmon, J. H. J. clin. Invest. 50, 2091–2103 (1971).

    Article  CAS  Google Scholar 

  29. Friedmann, J. M., Leibel, R. L. & Bahary, N. Mammalian Genome 1, 130–144 (1991).

    Article  Google Scholar 

  30. Meyers, J. C. et al. Proc. natn. Acad. Sci. U.S.A. 78, 3516–3520 (1981).

    Article  ADS  Google Scholar 

  31. Dean, M. et al. Nature 318, 385–388 (1985).

    Article  ADS  CAS  Google Scholar 

  32. Quinto, C. et al. Proc. natn. Acad. Sci. U.S.A. 79, 31–35 (1982).

    Article  ADS  CAS  Google Scholar 

  33. Yanagi, Y. et al. Nature 308, 145–149 (1984).

    Article  ADS  CAS  Google Scholar 

  34. Bucan, M. et al. EMBO J. 5, 2899–2905 (1986).

    Article  CAS  Google Scholar 

  35. Wilkie, T. M. & Palmiter, R. D. Molec cell. Biol. 7, 1646–1655 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinmeyer, K., Klocke, R., Ortland, C. et al. Inactivation of muscle chloride channel by transposon insertion in myotonic mice. Nature 354, 304–308 (1991). https://doi.org/10.1038/354304a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/354304a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing