Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Primary structure of dystrophin-related protein

Abstract

DYSTROPHIN-RELATED protein (DRP or 'utrophin'1) is localized in normal adult muscle primarily at the neuromuscular junction2–4. In the absence of dystrophin in Duchenne muscular dystrophy (DMD) patients, DRP is also present in the sarcolemma3–7. DRP is expressed in fetal and regenerating muscle and may play a similar role to dystrophin in early development3,7–9, although it remains to be determined whether DRP can functionally replace dystrophin in adult tissue. Previously we described a 3.5-kilobase complementary DNA clone that exhibits 80 per cent homology to the C-terminal domain of dystrophin10. This sequence identifies a 13-kilobase transcript that maps to human chromosome 6 (refs 2, 11). Antibodies raised against the gene product identify a polypeptide with a relative molecular mass of about 400K in all tissues examined7,8,12. To investigate the relationship between DRP and dystrophin in more detail, we have cloned and sequenced the whole DRP cDNA. Homology between DRP and dystrophin extends over their entire length, suggesting that they derive from a common ancestral gene. Comparative analysis of primary sequences highlights regions of functional importance, including those that may mediate the localization of DRP and dystrophin in the muscle cell.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blake, D. J. et al. Hum. molec Genet. 1, 103–109 (1992).

    Article  CAS  Google Scholar 

  2. Love, D. R. et al. Proc. natn. Acad. Sci. U.S.A. 88, 3243–3247 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Khurana, T. S. et al. Neuromuscular Dis. 1, 185–194 (1991).

    Article  CAS  Google Scholar 

  4. Pons, F. et al. FEBS Lett. 282, 161–165 (1991).

    Article  CAS  Google Scholar 

  5. Ohlendiek, K. et al. Neuron 7, 499–508 (1991).

    Article  Google Scholar 

  6. Tanaka, H. et al. Histochemistry 96, 1–5 (1991).

    Article  CAS  Google Scholar 

  7. thiMan N. et al. J. Cell Biol. 115, 1695–1700 (1991).

    Article  Google Scholar 

  8. Voit, T., Haas, K., Leger, J. O., Pons, F. & Leger, J. J. Am. J. Path. 139, 969–976 (1991).

    CAS  PubMed  Google Scholar 

  9. Takemitsu, M. et al. Biochem. Biophys. Res. Commun. 180, 1179–1186 (1991).

    Article  CAS  Google Scholar 

  10. Love, D. R. et al. Nature 339, 55–58 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Khurana, T. S., Hoffman, E. P. & Kunkel, L. M. J. biol. Chem. 265, 16717–16720 (1990).

    CAS  PubMed  Google Scholar 

  12. Augier, N. et al. J. Neurol. Sci. 107, 233–238 (1992).

    Article  CAS  Google Scholar 

  13. Koenig, M., Monaco, A. P. & Kunkel, L. M. Cell 53, 219–228 (1988).

    Article  CAS  Google Scholar 

  14. Hemmings, L., Kuhlman, P. A. & Critchley, D. R. J. Cell Biol. 116, 1369–1380 (1992).

    Article  CAS  Google Scholar 

  15. Way, M. et al. FEBS Lett. 301, 243–245 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Levine, B. A., Moir, A. J., Patchell, V. B. & Perry, S. V. FEBS Lett. 263, 159–162 (1990).

    Article  CAS  Google Scholar 

  17. Khulman, P. A., Hemmings, L. & Critchley, D. R. FEBS Lett. 304, 201–206 (1992).

    Article  Google Scholar 

  18. England, S. B. et al. Nature 342, 180–182 (1990).

    Article  ADS  Google Scholar 

  19. Ervasti, J. M. & Campbell, K. P. Cell 66, 1121–1131 (1991).

    Article  CAS  Google Scholar 

  20. Suzuki, A., Yoshida, M., Yamamoto, H. & Ozawa, E. FEBS Lett. 308, 154–160 (1992).

    Article  CAS  Google Scholar 

  21. Arahata, K. et al. J. neurol. Sci. 101, 148–156 (1991).

    Article  CAS  Google Scholar 

  22. Koenig, M. et al. Am. J. hum. Genet. 45, 498–506 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Devereux, J., Haekerli, P. & Smithies, O. Nucleic Acids Res. 12, 387–395 (1984).

    Article  CAS  Google Scholar 

  24. Lemaire, C., Heilig, R. & Mandel, J. L. Nucleic Acids Res. 16, 11815 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tinsley, J., Blake, D., Roche, A. et al. Primary structure of dystrophin-related protein. Nature 360, 591–593 (1992). https://doi.org/10.1038/360591a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360591a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing