Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Co-existence of cationic and chloride components in odorant-induced current of vertebrate olfactory receptor cells

Abstract

ODORANT stimulation leads to a depolarization of olfactory receptor neurons1–3. A mechanism underlying this transduction, which occurs in the sensory cilia3–6, involves a G-protein-mediated increase in adenylyl cyclase activity7–10, and therefore a rise in internal cyclic AMP and consequent opening of a cAMP-gated cation channel on the plasma membrane11–22. Another mechanism, not as well established, involves the opening of an inositol trisphosphate-activated cation channel on the plasma membrane23 as a result of phospholipase C activity24,25. In both cases, an influx of cations is thought to generate the depolarizing receptor potential. We now report, however, that the mechanism is actually more complex. The odorant-induced current appears to contain an inward chloride component also, which is triggered by calcium influx through the cation-selective channel. This newly found chloride component can be as large as the cationic component. The co-existence of cationic and chloride components in the odorant response, possibly unique among sensory transduction mechanisms, may serve to reduce variations in the transduction current resulting from changes in external ionic concentrations around the olfactory cilia. Our finding can explain the longstanding puzzle of why removal of most mucosal cations still does not diminish the amplitude of the olfactory receptor cell response26–28.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Getchell, T. V. Physiol. Rev. 66, 772–818 (1986).

    Article  CAS  Google Scholar 

  2. Firestein, S. & Werblin, F. Science 244, 79–82 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Kurahashi, T. J. Physiol. 419, 177–192 (1989).

    Article  CAS  Google Scholar 

  4. Firestein, S., Shepherd, G. M. & Werblin, F. S. J. Physiol. 430, 135–158 (1990).

    Article  CAS  Google Scholar 

  5. Lowe, G. & Gold, G. H. J. Physiol. 442, 147–168 (1991).

    Article  CAS  Google Scholar 

  6. Dionne, V. E. J. gen. Physiol. 99, 415–433 (1992).

    Article  CAS  Google Scholar 

  7. Lancet, D. A. Rev. Neurosci. 9, 329–355 (1986).

    Article  CAS  Google Scholar 

  8. Bakalyar, H. A. & Reed, R. R. Science 250, 1403–1406 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Sklar, P. B., Anholt, R. R. H. & Snyder, S. H. J. biol. Chem. 261, 15538–15543 (1986).

    CAS  Google Scholar 

  10. Lowe, G., Nakamura, T. & Gold, G. H. Proc. natn. Acad. Sci. U.S.A. 86, 5641–5645 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Nakamura, T. & Gold, G. H. Nature 325, 442–444 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Suzuki, N. in Chemical Senses Vol. 1 (eds Brand, J. G., Teeter, J. H., Cagan, R. H. & Kare, M. R.) 469–493 (Dekker, New York, 1989).

    Google Scholar 

  13. Kolesnikov, S. S., Zhainazarov, A. B. & Kosolapov, A. V. FEBS Lett. 266, 96–98 (1990).

    Article  CAS  Google Scholar 

  14. Kurahashi, T. J. Physiol. 430, 355–371 (1990).

    Article  CAS  Google Scholar 

  15. Kleene, S. J. & Gesteland, R. C. J. membr. Biol. 120, 75–81 (1991).

    Article  CAS  Google Scholar 

  16. Firestein, S., Darrow, B. & Shepherd, G. M. Neuron 6, 825–835 (1991).

    Article  CAS  Google Scholar 

  17. Firestein, S., Zufall, F. & Shepherd, G. M. J. Neurosci. 11, 3565–3572 (1991).

    Article  CAS  Google Scholar 

  18. Kurahashi, T. & Kaneko, A. NeuroReport 2, 5–8 (1991).

    Article  CAS  Google Scholar 

  19. Zufall, F., Firestein, S. & Shepherd, G. M. J. Neurosci. 11, 3573–3580 (1991).

    Article  CAS  Google Scholar 

  20. Frings, S., & Lindemann, B. J. gen. Physiol. 97, 1–16 (1991).

    Article  CAS  Google Scholar 

  21. Frings, S., Lynch, J. W. & Lindemann, B. J. gen. Physiol. 100, 45–67 (1992).

    Article  CAS  Google Scholar 

  22. Kramer, R. H. & Siegelbaum, S. A. Neuron 9, 897–906 (1992).

    Article  CAS  Google Scholar 

  23. Restrepo, D., Miyamoto, T., Bryant, B. P. & Teeter, J. H. Science 249, 1166–1168 (1990).

    Article  ADS  CAS  Google Scholar 

  24. Huque, T. & Bruch, R. C. Biochem. biophys. Res. Commun. 137, 36–42 (1986).

    Article  CAS  Google Scholar 

  25. Boekhoff, I., Tareilus, E., Strotmann, J. & Breer, H. EMBO J. 9, 2453–2458 (1990).

    Article  CAS  Google Scholar 

  26. Tucker, D. & Shibuya, T. Cold Spring Harbor Symp. quant Biol. 30, 207–215 (1965).

    Article  CAS  Google Scholar 

  27. Suzuki, N. Comp. Biochem. Physiol. 61A, 461–467 (1978).

    CAS  Google Scholar 

  28. Yoshii, K. & Kurihara, K. Brain Res. 274, 239–248 (1983).

    Article  CAS  Google Scholar 

  29. Kurahashi, T. & Shibuya, T. Brain Res. 515, 261–268 (1990).

    Article  CAS  Google Scholar 

  30. Kleene, S. J. & Gesteland, R. C. J. Neurosci. 11, 3624–3629 (1991).

    Article  CAS  Google Scholar 

  31. Horn, R. & Marty, A. J. gen. Physiol. 92, 145–159 (1988).

    Article  CAS  Google Scholar 

  32. Yamashita, M. & Wässle, H. Vis. Neurosci. 6, 399–401 (1991).

    Article  CAS  Google Scholar 

  33. Alvarez-Leefmans, F. J. in Chloride Channels and Carriers in Nerve, Muscle and Glial Cells (eds Alvarez-Leefmans, F. J. & Russell, J. M.) 109–158 (Plenum, New York, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurahashi, T., Yau, KW. Co-existence of cationic and chloride components in odorant-induced current of vertebrate olfactory receptor cells. Nature 363, 71–74 (1993). https://doi.org/10.1038/363071a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363071a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing