Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Different types of calcium channels mediate central synaptic transmission

Abstract

SYNAPTIC transmission is mediated by calcium entry through voltage-dependent calcium channels in presynaptic nerve terminals1,2. Various types of calcium channel have been characterized in neuronal somata3& ndash;6, but it is not clear which subtypes induce transmitter release at central synapses. The N-type Ca2+ channel blocker & omega;-conotoxin GVIA (& omega;-CgTx) suppresses the excitatory postsynaptic responses only partially7,8, whereas potassium-induced release of glutamate from brain synaptosomes can be blocked by & omega;-Aga-VIA (ref. 9), a blocker of P-type calcium channels5,10 and possibly of other types of calcium channels11,12. Here we test type-specific calcium-channel blockers on postsynaptic currents recorded from neurons in thin slices of rat central nervous system13. Inhibitory postsynaptic currents in cerebellar and spinal neurons and excitatory postsynaptic currents in hippo-campal neurons are markedly suppressed by & omega;-Aga-IVA and reduced to a lesser extent by & omega;-CgTx. The L-type calcium channel blocker nicardipine had no effect. Our results indicate that at least two types of calcium channel mediate synaptic transmission in the mammalian central nervous system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Katz, B. The Release of Neural Transmitter Substances (Liverpool Univ. Press, UK, 1969).

    Google Scholar 

  2. Augustine, G. J., Charlton, M. P. & Smith S. J. A. Rev. Neurosci. 10, 633–693 (1987).

    Article  CAS  Google Scholar 

  3. Miller, R. J. Science 235, 46–52 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Tsien, R. W., Lipscomb, D., Madison, D. V., Bley, K. R. & Fox, A. P. Trends Neurosci. 11, 431–437 (1988).

    Article  CAS  Google Scholar 

  5. Mintz, I. M., Adams, M. E. & Bean, B. P. Neuron 9, 85–95 (1992).

    Article  CAS  Google Scholar 

  6. Usowicz, M. M., Sugimori, M., Chersey, B. & Llinas, R. Neuron 9, 1185–1199 (1992).

    Article  CAS  Google Scholar 

  7. Kamiya, H., Sawada, S. & Yamamoto, C. Neurosci. Lett. 91, 84–88 (1988).

    Article  CAS  Google Scholar 

  8. Horn, A. L. & Kemp J. A. Br. J. Pharmac. 103, 1733–1739 (1991).

    Article  Google Scholar 

  9. Turner, T. J., Adams, M. E. & Dunlap, K. Science, 258, 310–313 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Mintz, I. M. et al. Nature 355, 827–829 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Sather, W. A. et al. Soc. Neurosci. Abstr. 18, 10 (1992).

    Google Scholar 

  12. Soong, T. W. et al. Science 260, 1133–1136 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Edwards, F. A., Konnerth, A., Sakmann, B. & Takahashi, T. Pflügers Arch. 414, 600–612 (1989).

    Article  CAS  Google Scholar 

  14. Augustine, G. J. & Charlton, M. P. J. Physiol., Lond. 381, 619–640 (1986).

    Article  CAS  Google Scholar 

  15. Dodge, F. A. Jr & Rahamimoff, R. J. Physiol., Lond. 193, 419–432 (1967).

    Article  CAS  Google Scholar 

  16. Takahashi, T. J. Physiol., Lond. 450, 593–611 (1992).

    Article  CAS  Google Scholar 

  17. Llinas, R., Sugimori, M., Lin, J.-W. & Cherksey, B. Proc. natn. Acad. Sci. U.S.A. 86, 1689–1693 (1989).

    Article  ADS  CAS  Google Scholar 

  18. McCleskey E. W. et al. Proc. natn. Acad. Sci. U.S.A. 84, 4327–4331 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Mori, Y. et al. Nature 350, 398–402 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Magleby, K. L. in Synaptic Function (eds Edelman, G. M. et al.) 21–56 (Neurosciences Institute, New York, 1987).

    Google Scholar 

  21. Swandulla, D., Hans, M., Zisper, K. & Augustine, G. J. Neuron 7, 915–926 (1991).

    Article  CAS  Google Scholar 

  22. Lemos, J. R. & Nowicky, M. C. Neuron 2, 1419–1426 (1989).

    Article  CAS  Google Scholar 

  23. Cox, D.H. & Dunlap, K. J. Neurosci. 12, 906–914 (1992).

    Article  CAS  Google Scholar 

  24. Swartz, K. J. & Bean, B. P. J. Neurosci. 12, 4358–4371 (1992).

    Article  CAS  Google Scholar 

  25. Sayer, R. J., Schwindt, P. C. & Crill, W. E. J. Neurophysiol. 68, 833–842 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, T., Momiyama, A. Different types of calcium channels mediate central synaptic transmission. Nature 366, 156–158 (1993). https://doi.org/10.1038/366156a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366156a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing