Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Radial optic flow induces vergence eye movements with ultra-short latencies

Abstract

An observer moving forwards through the environment experiences a radial pattern of image motion on each retina. Such patterns of optic flow are a potential source of information about the observer's rate of progress1, direction of heading2 and time to reach objects that lie ahead3. As the viewing distance changes there must be changes in the vergence angle between the two eyes so that both foveas remain aligned on the object of interest in the scene ahead. Here we show that radial optic flow can elicit appropriately directed (horizontal) vergence eye movements with ultra-short latencies (roughly 80 ms) in human subjects. Centrifugal flow, signalling forwards motion, increases the vergence angle, whereas centripetal flow decreases the vergence angle. These vergence eye movements are still evident when the observer's view of the flow pattern is restricted to the temporal hemifield of one eye, indicating that these responses do not result from anisotropies in motion processing but from a mechanism that senses the radial pattern of flow. We hypothesize that flow-induced vergence is but one of a family of rapid ocular reflexes, mediated by the medial superior temporal cortex, compensating for translational disturbance of the observer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Initial vergence responses to looming steps (radial optic flow plus size change).
Figure 2: The adequate stimulus for the short-latency vergence associated with looming steps is radial flow and the size changes are irrelevant.
Figure 3: Effect of masking off various parts of the binocular visual fields on initial ocular responses of subject FAM to centrifugal optic flow.

Similar content being viewed by others

References

  1. Prokop, T., Schubert, M. & Berger, W. Visual influence on human locomotion: Modulation to changes in optic flow. Exp. Brain Res. 114, 63–70 (1997).

    Article  CAS  Google Scholar 

  2. Warren, W. H. & Hannon, D. J. Direction of self-motion is perceived from optical flow. Nature 336, 162–163 (1988).

    Article  ADS  Google Scholar 

  3. Lee, D. N. Atheory of visual control of braking based on information about time-to-collision. Perception 5, 437–459 (1976).

    Article  CAS  Google Scholar 

  4. Cornilleau-Pérès, V. & Gielen, C. C. A. M. Interactions between self-motion and depth perception in the processing of optic flow. Trends Neurosci. 19, 196–202 (1996).

    Article  Google Scholar 

  5. Lee, D. N. The optic flow field: the foundation of vision. Phil. Trans. R. Soc. Lond. B290, 169–179 (1980).

    Article  ADS  Google Scholar 

  6. Collewijn, H. & Erkelens, C. J. in Eye Movements and their Role in Visual and Cognitive Processes (ed. Kowler, E.) 213–261 (Elsevier, Amsterdam, (1990)).

    Google Scholar 

  7. Erkelens, C. J. & Regan, D. Human ocular vergence movements induced by changing size and disparity. J. Physiol. (Lond) 379, 145–169.(1986).

    Article  CAS  Google Scholar 

  8. Cohen, G. A. & Lisberger, S. G. Motion disparity and looming cues form hierarchical inputs for smooth pursuit of targets moving in 3 dimensions. Soc. Neurosci. Abstr. 22, 964 (1996).

    Google Scholar 

  9. Enright, J. T. Art and the oculomotor system: perspective illustrations evoke vergence changes. Perception 16, 731–746 (1987).

    Article  CAS  Google Scholar 

  10. Takeuchi, T. Visual search of expansion and contraction. Vision Res. 37, 2083–2090 (1997).

    Article  CAS  Google Scholar 

  11. Busettini, C., Miles, F. A. & Krauzlis, R. J. Short-latency disparity vergence responses in humans. Soc. Neurosci. Abstr. 20, 1403 (1994).

    Google Scholar 

  12. Miles, F. A. in Eye Movement Research: Mechanisms, Processes and Applications (eds Findlay, J. M., Kentridge, W. & Walker, R.) 47–62 (Elsevier, Amsterdam, (1995)).

    Book  Google Scholar 

  13. Gellman, R. S., Carl, J. R. & Miles, F. A. Short latency ocular-following responses in man. Vis. Neurosci. 5, 107–122 (1990).

    Article  CAS  Google Scholar 

  14. Busettini, C., Miles, F. A., Schwarz, U. & Carl, J. R. Human ocular responses to translation of the observer and of the scene: dependence on viewing distance. Exp. Brain Res. 100, 484–494 (1994).

    Article  CAS  Google Scholar 

  15. Busettini, C., Masson, G. S. & Miles, F. A. Arole for stereoscopic depth cues in the rapid visual stabilization of the eyes. Nature 380, 342–345 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Masson, G. S., Busettini, C. & Miles, F. A. Vergence eye movements in response to binocular disparity without the perception of depth. Nature 389, 283–286 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Miles, F. A., Kawano, K. & Optican, L. M. Short-latency ocular following responses of monkey. I. Dependence on temporospatial properties of the visual input. J. Neurophysiol. 56, 1321–1354 (1986).

    Article  CAS  Google Scholar 

  18. Busettini, C., Miles, F. A. & Krauzlis, R. J. Short-latency disparity vergence responses and their dependence on a prior saccadic eye movement. J. Neurophysiol. 75, 1392–1410 (1996).

    Article  CAS  Google Scholar 

  19. Ungerleider, L. G. & Mishkin, M. in Analysis of Visual Behavior (eds Ingle, D. J., Goodale, M. A. & Mansfield, R. J. W.) 549–586 (MIT Press, Cambridge, (1982)).

    Google Scholar 

  20. Saito, H. et al. Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J. Neurosci. 6, 145–157 (1986).

    Article  CAS  Google Scholar 

  21. Tanaka, K. & Saito, H. Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J. Neurophysiol. 62, 626–641 (1989).

    Article  CAS  Google Scholar 

  22. Tanaka, K., Fukada, Y. & Saito, H. Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the macaque monkey. J. Neurophysiol. 62, 642–656 (1989).

    Article  CAS  Google Scholar 

  23. Duffy, C. J. & Wurtz, R. H. Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J. Neurophysiol. 65, 1329–1345 (1991).

    Article  CAS  Google Scholar 

  24. Duffy, C. J. & Wurtz, R. H. Response of monkey MST neurons to optic flow stimuli with shifted centers of motion. J. Neurosci. 15, 5192–5208 (1995).

    Article  CAS  Google Scholar 

  25. Lappe, M., Bremmer, F., Pekel, M., Thiele, A. & Hoffmann, K.-P. Optic flow processing in monkey STS: A theoretical and experimental approach. J. Neurosci. 16, 6265–6285 (1996).

    Article  CAS  Google Scholar 

  26. de Jong, B. M., Shipp, S., Skidmore, B., Frackowiak, R. S. J. & Zeki, S. The cerebral activity related to the visual perception of forward motion in depth. Brain 117, 1039–1054 (1994).

    Article  Google Scholar 

  27. Kawano, K., Shidara, M., Watanabe, Y. & Yamane, S. Neural activity in cortical area MST of alert monkey during ocular following responses. J. Neurophysiol. 71, 2305–2324 (1994).

    Article  CAS  Google Scholar 

  28. Kawano, K., Inoue, Y., Takemura, A., Kitama, T. & Miles, F. A. in Parietal Lobe Contributions to Orientation in 3D Space (eds Thier, P. & Karnath, H.-O) 185–199 (Springer, Heidelberg, (1997).

    Book  Google Scholar 

  29. Takemura, A., Inoue, Y., Kawano, K. & Miles, F. A. Short-latency discharges in medial superior temporal area of alert monkeys to sudden changes in the horizontal disparty. Soc. Neurosci. Abstr. 23, 1557 (1997).

    Google Scholar 

  30. Fuchs, A. F. & Robinson, D. A. Amethod for measuring horizontal and vertical eye movement chronically in the monkey. J. Appl. Physiol. 21, 1068–1070 (1966).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.S.M. was supported by La Fondation pour la Recherche Medicale (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Miles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busettini, C., Masson, G. & Miles, F. Radial optic flow induces vergence eye movements with ultra-short latencies. Nature 390, 512–515 (1997). https://doi.org/10.1038/37359

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/37359

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing