Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Calcium activation of Ras mediated by neuronal exchange factor Ras-GRF

Abstract

TYROSINE kinase receptors stimulate the Ras signalling pathway by enhancing the activity of the SOS nucleotide-exchange factor1. This occurs, at least in part, by the recruitment of an SOSá¤-GRB2 complex to Ras in the plasma membrane. Here we describe a different signalling pathway to Ras that involves activation of the Ras-GRF exchange factor2á¤-4 in response to Ca2+influx. In particular, we show that the ability of Ras-GRF to activate Ras in vivo is markedly enhanced by raised Ca2+ concentrations. Activation is mediated by calmodulin binding to an IQ motif5 in Ras-GRF, because substitutions in conserved amino acids in this motif prevent both calmodulin binding to Ras-GRF and Ras-GRF activation in vivo. So far, full-length Ras-GRF has been detected only in brain neurons2,6,7. Our findings implicate Ras-GRF in the regulation of neuronal functions that are influenced by Ca2+ signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Feig, L. A. Curr. Opin. Cell Biol. 6, 204–211 (1994).

    Article  CAS  Google Scholar 

  2. Shou, C., Farnsworth, C. L., Neel, B. G. & Feig, L. A. Nature 358, 351–354 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Martegani, E. et al. EMBO J. 11, 2151–2157 (1992).

    Article  CAS  Google Scholar 

  4. Wei, W. et al. Proc natn. Acad. Sci. U.S.A 89, 7100–7104 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Cheney, R. E. & Mooseker, M. S. Curr. Opin. Cell Biol. 4, 27–35 (1992).

    Article  CAS  Google Scholar 

  6. Cen, H., Papageorge, A. G., Zippel, R., Lowy, D. R. & Zhang, K. EMBO J. 11, 4007–4015 (1992).

    Article  CAS  Google Scholar 

  7. Wei, W., Schreiber, S. S., Baudry, M., Tocco, G. & Broek, D. Molec. Brain. Res. 19, 339–344 (1993).

    Article  CAS  Google Scholar 

  8. Shou, C., Wurmser, A., Suen, K. L., Barbacid, M. & Feig, L. A. Oncogene 10, 1887–1893 (1995).

    CAS  PubMed  Google Scholar 

  9. Pelicci, G. et al. Cell 70, 93–104 (1992).

    Article  CAS  Google Scholar 

  10. Rozakis-Adcock, M. et al. Nature 360, 689–692 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Rosen, L. B., Ginty, D. D., Weber, M. J. & Greenberg, M. E. Neuron 12, 1207–1221 (1994).

    Article  CAS  Google Scholar 

  12. Cheney, R. E. & Mooseker, M. S. Molec. Biol. Cell. suppl. 5, 21a (1994).

    Google Scholar 

  13. Dubridge, R. B. et al. Molec. cell. Biol. 7, 379–387 (1987).

    Article  CAS  Google Scholar 

  14. Feig, L. A. & Cooper, G. M. Molec. cell. Biol. 8, 3235–3243 (1988).

    Article  CAS  Google Scholar 

  15. Farnsworth, C. & Feig, L. A. Molec. cell. Biol. 11, 4822–4829 (1991).

    Article  CAS  Google Scholar 

  16. Schweighoffer, F. et al. Molec. cell. Biol. 13, 39–43 (1993).

    Article  CAS  Google Scholar 

  17. Cen, H., Papageorge, W. C., Zhang, K. & Lowy, D. R. Molec. cell. Biol. 13, 7718–7724 (1994).

    Article  Google Scholar 

  18. Buday, L. & Downward, J. Cell 73, 611–620 (1993).

    Article  CAS  Google Scholar 

  19. Aronheim, A. et al. Cell 78, 949–961 (1994).

    Article  CAS  Google Scholar 

  20. Quilliam, L. A. et al. Proc. natn. Acad. Sci. U.S.A. 91, 8512–8516 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Kennedy, M. B. Trends Neurosci. 12, 417–438 (1989).

    Article  CAS  Google Scholar 

  22. Bading, H., Ginty, D. D. & Greenberg, M. E. Nature 260, 181–186 (1993).

    CAS  Google Scholar 

  23. Clapham, D. E. Cell 80, 259–268 (1995).

    Article  CAS  Google Scholar 

  24. Margolis, B. Molec. cell. Biol. 10, 435–441 (1990).

    Article  CAS  Google Scholar 

  25. Farnsworth, C. L., Marshal, M. S., Gibbs, J. B., Stacey, D. W. & Feig, L. A. Cell 64, 625–633 (1991).

    Article  CAS  Google Scholar 

  26. Swick, A. G., Janicot, M., Cheneval-Kastelic, McLenithan, J. C. & Lane, M. D. Proc. natn. Acad. Sci. U.S.A. 89, 1812–1816 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K. & Pease, L. R. Gene 77, 61–68 (1989).

    Article  CAS  Google Scholar 

  28. Feig, L. A. & Cooper, G. M. Molec. cell. Biol. 8, 2472–2478 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farnsworth, C., Freshney, N., Rosen, L. et al. Calcium activation of Ras mediated by neuronal exchange factor Ras-GRF. Nature 376, 524–527 (1995). https://doi.org/10.1038/376524a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376524a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing