Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synaptic code for sensory modalities revealed by C. elegans GLR-1 glutamate receptor

Abstract

How does the nervous system encode environmental stimuli as sensory experiences? Both the type (visual, olfactory, gustatory, mechanical or auditory) and the quality of a stimulus (spatial position, intensity or frequency) are represented as a neural code. Here we undertake a genetic analysis of sensory modality coding in Caenorhabditis elegans. The ASH sensory neurons respond to two distinct sensory stimuli (nose touch and osmotic stimuli). A mutation in the glr-1 (glutamate receptor) gene eliminates the response to nose touch but not to osmotic repellents. The predicted GLR-1 protein is roughly 40% identical to mammalian AMPA-class glutamate receptor (GluR) subunits. Analysis of glr-1 expression and genetic mosaics indicates that GLR-1 receptors act in synaptic targets of the ASH neurons. We propose that discrimination between the ASH sensory modalities arises from differential release of ASH neurotransmitters in response to different stimuli.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Bargmann, C. Cell 74, 515–527 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Hodgkin, J. Genetics 103, 43–64 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Riddle, D. L. in The Nematode C. elegans (ed. Wood, W. B.) 393–412 (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1988).

    Google Scholar 

  4. Sulston, J. et al. Nature 356, 37–41 (1992).

    Article  ADS  PubMed  Google Scholar 

  5. Sommer, B. et al. Science 249, 1580–1585 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. & Prasher, D. Science 263, 802–805 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Chalfie, M. et al. J. Neurosci. 5, 956–964 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Way, J. C. & Chalfie, M. Genes Dev. 3, 1823–1833 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. Phil. Trans. R. Soc. Lond. 314, 1–340 (1986).

    Article  CAS  Google Scholar 

  10. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. Devl Biol. 100, 64–119 (1983).

    Article  CAS  Google Scholar 

  11. Peng, Y. & Zucker, R. S. Neuron 10, 465–473 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. DeVries, S. H. & Baylor, D. A. Cell/Neuron 72/10, 139–149 (1993).

    Google Scholar 

  13. Whim, M. D. & Lloyd, P. E. J. Neurosci. 14, 4244–4251 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kaplari, J. M. & Horvitz, H. R. Proc. natn. Acad. Sci. U.S.A. 90, 2227–2231 (1993).

    Article  ADS  Google Scholar 

  15. Bargmann, C. I., Thomas, J. H. & Horvitz, H. R. Cold Spring Harbor Symp. quant. Biol. 55, 529–538 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Herman, R. & Hedgecock, E. Nature 348, 169–171 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Hollmann, M., Maron, C. & Heinemann, S. Neuron 13, 1331–1343 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Huang, L., Tzou, P. & Sternberg, P. Molec. Biol. Cell 5, 395–412 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hart, A., Sims, S. & Kaplan, J. Synaptic code for sensory modalities revealed by C. elegans GLR-1 glutamate receptor. Nature 378, 82–85 (1995). https://doi.org/10.1038/378082a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378082a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing