Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Voltage-dependent modulation of N-type calcium channels by G-protein β γsubunits

Abstract

THE most commonly used signal transduction pathway for receptor-mediated N-type Ca2+-channel modulation involves activation of a heterotrimeric G protein to produce voltage-dependent inhibition1. Although it is widely assumed that Gα mediates this effect, experiments to address this hypothesis directly are lacking. Here I show that transient overexpression of Gβγ in sympathetic neurons mimics and occludes the voltage-dependent Ca2+ channel modulation produced by noradrenaline (NA). Conversely, over-expression of Gα produces minimal effects on basal Ca2+ channel behaviour but attenuates NA-mediated inhibition in a manner consistent with the buffering of Gβγ. These observations indicate that it is Gβγ, and not Gα, that mediates voltage-dependent inhibition of N-type Ca2+ channels. The identification of Gβγ as the mediator of this pathway has broad implications as G-protein-coupled receptors, many of which are implicated in disease or are targets of therapeutic agents, couple to N-type Ca2+ channels2 and may modulate synaptic transmission by this mechanism3,4.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Hille, B. Trends Neurosci. 17, 531–536 (1994).

    Article  CAS  Google Scholar 

  2. Anwyl, R. Brain Res. Rev. 16, 265–281 (1991).

    Article  CAS  Google Scholar 

  3. Miller, R. FASEB J. 4, 3291–3299 (1990).

    Article  CAS  Google Scholar 

  4. Dunlap, K., Luebke, J. & Turner, T. Trends Neurosci. 18, 89–98 (1995).

    Article  CAS  Google Scholar 

  5. Plummer, M. R., Rittenhouse, A., Kanevsky, M. & Hess, P. J. Neurosci. 11, 2339–2348 (1991).

    Article  CAS  Google Scholar 

  6. Regan, L. J., Sah, D. W. Y. & Bean, B. P. Neuron 6, 269–280 (1991).

    Article  CAS  Google Scholar 

  7. Diversé-Pierluissi, M., Goldsmith, P. K. & Dunlap, K. Neuron 14, 191–200 (1995).

    Article  Google Scholar 

  8. Schofield, G. G. Eur. J. Pharmac. 180, 37–47 (1990).

    Article  CAS  Google Scholar 

  9. Strittmatter, S. M., Fishman, M. C. & Zhu, X.-P. J. Neurosci. 14, 2327–2338 (1994).

    Article  CAS  Google Scholar 

  10. Caulfield, M. P. et al. J. Physiol., Lond. 477, 415–422 (1994).

    Article  CAS  Google Scholar 

  11. Bean, B. Nature 340, 153–156 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Grassi, F. & Lux, H. D. Neurosci. Lett. 105, 113–119 (1989).

    Article  CAS  Google Scholar 

  13. Elmslie, K. S., Zhou, W. & Jones, S. W. Neuron 5, 75–80 (1990).

    Article  CAS  Google Scholar 

  14. Slepak, V. Z., Katz, A. & Simon, M. I. J. biol. Chem. 270, 4037–4041 (1995).

    Article  CAS  Google Scholar 

  15. Slepak, V. Z., Wilkie, T. M. & Simon, M. I. J. biol. Chem. 268, 1414–1423 (1993).

    CAS  PubMed  Google Scholar 

  16. Slepak, V. Z. et al. J. biol. Chem. 268, 21889–21894 (1993).

    CAS  PubMed  Google Scholar 

  17. Masters, S. B. et al. J. biol. Chem. 264, 15467–15474 (1989).

    CAS  PubMed  Google Scholar 

  18. Ikeda, S. R. J. Physiol., Lond. 439, 181–214 (1991).

    Article  CAS  Google Scholar 

  19. Clapham, D. E. & Neer, E. J. Nature 365, 403–406 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Müller, S. & Lohse, M. J. Biochem. Soc. Trans. 23, 141–148 (1995).

    Article  Google Scholar 

  21. Chen, H. et al. Science 268, 1166–1169 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Pragnell, M. et al. Nature 368, 67–70 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Campbell, V., Berrow, N. S., Fitzgerald, E. M., Brickley, K. & Dolphin, A. C. J. Physiol., Lond. 485, 365–372 (1995).

    Article  CAS  Google Scholar 

  24. Roche, J. P., Anantharam, V. & Treistman, S. N. FEBS Lett. 371, 43–46 (1995).

    Article  CAS  Google Scholar 

  25. Bourinet, E. et al. Soc. Neurosci. Abstr. 21, 515 (1995).

    Google Scholar 

  26. Mintz, I. & Bean, B. P. Neuron 10, 889–898 (1993).

    Article  CAS  Google Scholar 

  27. Logothetis, D. E., Kurachi, Y., Galper, J., Neer, E. J. & Clapham, D. E. Nature 325, 321–326 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Zhu, Y. & Ikeda, S. R. Neuron 13, 657–669 (1994).

    Article  CAS  Google Scholar 

  29. Ikeda, S. R., Lovinger, D. M., McCool, B. A. & Lewis, D. L. Neuron 14, 1029–1038 (1995).

    Article  CAS  Google Scholar 

  30. Heim, R., Cubitt, A. B. & Tsien, R. Y. Nature 373, 663–664 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeda, S. Voltage-dependent modulation of N-type calcium channels by G-protein β γsubunits. Nature 380, 255–258 (1996). https://doi.org/10.1038/380255a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380255a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing