Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Disruption of auditory spatial working memory by inactivation of the forebrain archistriatum in barn owls

Abstract

BARN owls not only localize auditory stimuli with great accuracy, they also remember the locations of auditory stimuli and can use this remembered spatial information to guide their flight and strike1. Although the mechanisms of sound localization have been studied extensively2,3, the neurobiological basis of auditory spatial memory has not. Here we show that the ability of barn owls to orient their gaze towards and fly to the remembered location of auditory targets is lost during pharmacological inactivation of a small region in the forebrain, the anterior archistriatum. In contrast, archistriatal inactivation has no effect on stimulus-guided responses to auditory targets. The memory-dependent deficit is evident only for acoustic events that occur in the hemifield contralateral to the side that is inactivated. The data demonstrate that in the avian archistriatum, as in the mammalian frontal cortex, there exists a region that is essential for the expression of spatial working memory and that, in the barn owl, this region encodes auditory spatial memory.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Konishi, M. Am. Sci. 61, 414–424 (1973).

    ADS  Google Scholar 

  2. Clarey, J. C., Barone, P. & Imig, T. J. in The Mammalian Auditory Pathway: Neurophysiology (eds Popper, A. N. & Fay, R. R.) 232–334 (Springer, New York, 1992).

    Book  Google Scholar 

  3. King, A. J. Exp. Physiol. 78, 559–590 (1993).

    Article  CAS  Google Scholar 

  4. Baddeley, A. Working Memory (Oxford Univ. Press, New York, 1986).

    Google Scholar 

  5. Fuster, J. M. The Prefrontal Cortex (Oxford Univ. Press, New York, 1986).

    Google Scholar 

  6. Goldman-Rakic, P. S. Sci. Am. 267, 110–117 (1992).

    Article  CAS  Google Scholar 

  7. Goldman-Rakic, P. S. Neuron 14, 477–485 (1995).

    Article  CAS  Google Scholar 

  8. Deng, S.-Y., Goldberg, M. E., Segraves, M. A., Ungerleider, L. G. & Mishkin, M. in Adaptive Processes in the Visual and Oculomotor Systems (eds Keller, E. & Zee, D. S.) 201–208 (Pergamon, Oxford, 1986).

    Google Scholar 

  9. Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. J. Neurosci. 13, 1479–1497 (1993).

    Article  CAS  Google Scholar 

  10. Knudsen, E. I. & Knudsen, P. F. Exp. Brain Res. 108, 23–32 (1996).

    Article  CAS  Google Scholar 

  11. Knudsen, E. I., Cohen, Y. E. & Masino, T. J. Neurosci. 15, 5139–5151 (1995).

    Article  CAS  Google Scholar 

  12. Dias, E. C., Kiesan, M. & Segraves, M. A. J. Neurophysiol. 74, 2744–2748 (1995).

    Article  CAS  Google Scholar 

  13. Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. J. Neurophysiol. 61, 331–349 (1989).

    Article  CAS  Google Scholar 

  14. Hikosaka, O. & Wurtz, R. H. J. Neurophysiol. 53, 266–291 (1985).

    Article  CAS  Google Scholar 

  15. Zeier, H. Brain Res. 31, 327–339 (1971).

    Article  CAS  Google Scholar 

  16. Knudsen, E. I., Knudsen, P. F. & Masino, T. J. Neurosci. 13, 2837–2852 (1993).

    Article  CAS  Google Scholar 

  17. Neter, J., Wasserman, W. & Kutner, M. H. Applied Linear Statistical Models 3rd edn (Irwin, Homewood, IL, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knudsen, E., Knudsen, P. Disruption of auditory spatial working memory by inactivation of the forebrain archistriatum in barn owls. Nature 383, 428–431 (1996). https://doi.org/10.1038/383428a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383428a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing