Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of neuronal diversity in the Xenopus retina by Delta signalling

Abstract

To generate the variety of mature neurons and glia found in the developing retina, the competence of pluripotent progenitor cells to respond to extracellular signals must be controlled. Delta, a ligand of the Notch receptor, is a candidate for regulating progenitor competence on the grounds that activation of the pathway involving Notch and Delta can inhibit cellular differentiation1–6. Here we test this possibility in the developing Xenopus retina by misexpression of Delta messenger RNA. We find that Delta-misexpressing cells with wild-type neighbours adopt earlier fates, primarily becoming ganglion cells and cone photoreceptors. Progenitors transfected with Delta later in development also produce rod photoreceptors, but not the latest-generated cell types, demonstrating the importance of timing in Delta function. We conclude that Delta signalling in the vertebrate retina is a basic regulatory mechanism that can be used to generate neuronal diversity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dorsky, R. I., Rapaport, D. H. & Harris, W. A. Neuron 14, 487–496 (1995).

    Article  CAS  Google Scholar 

  2. Coffman, C. R., Skoglund, P., Harris, W. A. & Kintner, C. R. Cell 73, 659–671 (1993).

    Article  CAS  Google Scholar 

  3. Austin, C. P., Feldman, D. E., Ida, J. A. & Cepko, C. L. Development 121, 3637–3650 (1995).

    CAS  PubMed  Google Scholar 

  4. Nye, J. S., Kopan, R. & Axel, R. Development 120, 2421–2430 (1994).

    CAS  Google Scholar 

  5. Fortini, M. E., Rebay, I., Caron, L. A. & Artavanis, T. S. Nature 365, 555–557 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Chitnis, A., Henrique, D., Lewis, J., Ish-Horowicz, D. & Kintner, C. Nature 375, 761–766 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Holt, C. E., Bertsch, T. W., Ellis, H. M. & Harris, W. A. Neuron 1, 15–26 (1988).

    Article  CAS  Google Scholar 

  8. Belecky-Adams, T., Cook, B. & Adler, R. Dev. Biol. 178, 304–315 (1996).

    Article  CAS  Google Scholar 

  9. La Vail, M. M., Rapaport, D. H. & Rakic, P. J. Comp. Neurol. 309, 86–114 (1991).

    Article  CAS  Google Scholar 

  10. Turner, D. L., Snyder, E. Y. & Cepko, C. L. Neuron 4, 833–845 (1990).

    Article  CAS  Google Scholar 

  11. Wetts, R. & Fraser, S. E. Science 239,1142–1145 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Altshuler, D. & Cepko, C. Development 114, 947–957 (1992).

    CAS  Google Scholar 

  13. Reh, T. A. J. Neurobiol. 23, 1067–1083 (1992).

    Article  CAS  Google Scholar 

  14. Watanabe, T. & Raff, M. C. Development 114, 899–906 (1992).

    CAS  PubMed  Google Scholar 

  15. Harris, W. A. & Messersmith, S. L. Neuron 9, 357–372 (1992).

    Article  CAS  Google Scholar 

  16. Lillien, L. Nature 377, 158–162 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Fuhrmann, S., Kirsch, M. & Hofmann, H. D. Development 121, 2695–2706 (1995).

    CAS  PubMed  Google Scholar 

  18. Kelley, M. W., Turner, J. K. & Reh, T. A. Development 120, 2091–2102 (1994).

    CAS  PubMed  Google Scholar 

  19. Kelley, M. W., Turner, J. K. & Reh, T. A. Development 121, 3777–3785 (1995).

    CAS  PubMed  Google Scholar 

  20. Heitzler, P., Bourouis, M., Ruel, L., Carteret, C. & Simpson, P. Development 122, 161–171 (1996).

    CAS  PubMed  Google Scholar 

  21. Cabrera, C. V. Development 110, 733–742 (1990).

    CAS  PubMed  Google Scholar 

  22. Henrique, D. et al. Nature 375, 787–790 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus laevis (North-Holland, Amsterdam, 1956).

    Google Scholar 

  24. Huang, S. & Moody, S. A. J. Neurosci. 13, 3193–3210 (1993).

    Article  CAS  Google Scholar 

  25. Cagan, R. L. & Ready, D. F. Genes Dev. 3, 1099–1112 (1989).

    Article  CAS  Google Scholar 

  26. Reh, T. A. & Kljavin, I. J. J. Neurosci. 9, 4179–4189 (1989).

    Article  CAS  Google Scholar 

  27. Adler, R. & Hatlee, M. Science 243, 391–393 (1989).

    Article  ADS  CAS  Google Scholar 

  28. Reh, T. A. J. Neurosci. 7, 3317–3324 (1987).

    Article  CAS  Google Scholar 

  29. Waid, D. K. & McLoon, S. C. Soc. Neurosci. 21, 529 (1995).

    Google Scholar 

  30. Holt, C. E., Garlick, N. & Cornel, E. Neuron 4, 203–214 (1990).

    Article  CAS  Google Scholar 

  31. Parks, A. L. et al. Mech. Dev. 50, 201–206 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorsky, R., Chang, W., Rapaport, D. et al. Regulation of neuronal diversity in the Xenopus retina by Delta signalling. Nature 385, 67–70 (1997). https://doi.org/10.1038/385067a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385067a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing