Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia

Abstract

Several members of the chemokine receptor family are used together with CD4 for HIV-1 entry into target cells1–6. T cell line-tropic (T-tropic) HIV-1 viruses use the chemokine receptor CXCR4 as a co-receptor1, whereas macrophage-tropic (M-tropic) primary viruses use CCR5 (refs 2–6). Individuals with defective CCR5 alleles exhibit resistance to HIV-1 infection7,8, suggesting that CCR5 has an important role in vivo in HIV-1 replication. A subset of primary viruses can use CCR3 as well as CCR5 as a co-receptor5,6, but the in vivo contribution of CCR3 to HIV-1 infection and pathogenesis is unknown. HIV-1 infects the central nervous system (CNS) and causes the dementia associated with AIDS9. Here we report that the major target cells for HIV-1 infection in the CNS, the microglia9–11, express both CCR3 and CCR5. The CCR3 ligand, eotaxin, and an anti-CCR3 antibody inhibited HIV-1 infection of microglia, as did MIP-1β, which is a CCR5 ligand. Our results suggest that both CCR3 and CCR5 promote efficient infection of the CNS by HIV-1.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Feng, Y., Broder, C. C., Kennedy, P. E. & Berger, E. A. HIV-1 entry cofactor: Functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872–877 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Deng, H. K. et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature 381, 661–666 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Dragic, T. et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381, 667–673 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Alkahatib, G. et al. CC CK5: A RANTES, MIP-1α, MIP-1β receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272, 1955–1958 (1996).

    Article  ADS  Google Scholar 

  5. Choe, H. et al. The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85, 1135–1148 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Doranz, B. J. et al. A dual-tropic primary HIV-1 isolate that uses fusin and the β-chemokine rceptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85, 1149–1158 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Liu, R. et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367–377 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Samson, M. et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382, 722–725 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Price, R. W. The brain in AIDS: central nervous system HIV-1 infection and AIDS dementia complex. Science 239, 586–591 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Watkins, B. A. et al. Specific tropism of HIV-1 for microglial cells in primary human brain cultures. Science 249, 549–553 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Takahashi, K. et al. Ann. Neurol. 39, 705–711 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Ponath, P. et al. Molecular cloning and characterization of a human eotaxin receptor expressed selectively on eosinophils. J. Exp. Med. 183, 2437–2448 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Daugherty, B. L. et al. Cloning, expression, and characterization of the human eosinophil eotaxin receptor. J. Exp. Med. 183, 2349–2354 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Heath, H. et al. Chemokine receptor usage by human eosinophils. The importance of CCR3 demonstrated using an antagonistic monoclonal antibody. J. Clin. Invest. (in the press).

  15. Harouse, J. M. et al. CD4-independent infection of human neural cells by human immunodeficiency virus type 1. J. Virol. 63, 2527–2533 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tornatore, C., Nath, A., Amemiya, K. & Major, E. O. Persistent human immunodeficiency virus type 1 infection in human fetal glial cells reactivated by T-cell factor(s) or by the cytokines tumor necrosis factor alpha and interleukin-1 beta. J. Virol. 65, 6094–6100 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Korber, B. T. M. et al. Genetic differences between blood- and brain-derived viral sequences from human immunodeficiency virus type 1-infected patients: evidence of conserved elements in the V3 region of the envelope protein of brain-derived sequences. J. Virol. 68, 7467–7481 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Power, C. et al. Demented and nondemented patients with AIDS differ in brain derived human immunodeficiency virus type 1 envelope sequences. J. Virol. 68, 4643–4649 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Strizki, J. M. et al. Infection of primary human microglia and monocyte-derived macrophages with human immunodeficiency virus type 1 isolates: evidence of differential tropism. J. Virol. 70, 7654–7662 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gartner, S. & Popovic, M. Macrophage tropism of HIV-1. AIDS Res. Hum. Retroviruses 6, 1017–1021 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Westervelt, P., Gendelman, H. E. & Ratner, L. Identification of a determinant within the human immunodeficiency virus surface envelope glycoprotein critical for productive infection of primary monocytes. Proc. Natl Acad. Sci. USA 88, 3097–3101 (1991).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, Y. et al. Complete nucleotide sequence genome organization and biological properties of human immunodeficiency virus type 1 in vivo: evidence for limited defectiveness and complementation. J. Virol. 66, 6587–6600 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Collman, R. et al. An infectious molecular clone of an unusual macrophage-tropic and highly cytopathic strain of human immunodeficiency virus type 1. J. Virol. 66, 7517–7521 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cocchi, F. et al. Identification of RANTES, MIP-1α, and MIP-1β as the major HIV-suppressive factors produced by CD8+ T cells. Science 270, 1811–1815 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Bleul, C. C. et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382, 829–833 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Oberlin, E. et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 382, 883–835 (1996).

    Article  Google Scholar 

  27. O'Brien, W. A. et al. HIV-1 tropism for mononuclear phagocytes can be determined by regions of gp120 outside of the CD4-binding domain. Nature 348, 69–73 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Schmidtmayerova, H. et al. Human immunodeficiency virus type 1 infection alters chemokine β peptide expresison in human monocytes: implifications for recruitment of leukocytes into brain and lymph nodes. Proc. Natl Acad. Sci. USA 93, 700–704 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shi, B. et al. Apoptosis induced by HIV-1 infection of the central nervous system. J. Clin. Invest. 98, 1979–1990 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. He, J. & Landau, N. R. Use of a novel human immunodeficiency virus type 1 reporter virus expressing human placental alkaline phosphatase to detect an alternative viral receptor. J. Virol. 69, 4587–4592 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Chen, Y., Farzan, M. et al. CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature 385, 645–649 (1997). https://doi.org/10.1038/385645a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385645a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing