Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors

Abstract

AMPA glutamate receptors mediate the majority of rapid excitatory synaptic transmission in the central nervous system1,2 and play a role in the synaptic plasticity underlying learning and memory3,4. AMPA receptors are heteromeric complexes of four homologous subunits (GluRl–4) that differentially combine to form a variety of AMPA receptor subtypes1,2. These subunits are thought to have a large extracellular amino-terminal domain, three transmembrane domains and an intracellular carboxy-terminal domain5. AMPA receptors are localized at excitatory synapses and are not found on adjacent inhibitory synapses enriched in GABAA receptors6. The targeting of neurotransmitter receptors, such as AMPA receptors, and ion channels to synapses is essential for efficient transmission7,8. A protein motif called a PDZ domain is important in the targeting of a variety of membrane proteins to cell–cell junctions including synapses8–10. Here we identify a synaptic PDZ domain-containing protein GRIP (glutamate receptor interacting protein) that specifically interacts with the C termini of AMPA receptors. GRIP is a new member of the PDZ domain-containing protein family which has seven PDZ domains and no catalytic domain. GRIP appears to serve as an adapter protein that links AMPA receptors to other proteins and may be critical for the clustering of AMPA receptors at excitatory synapses in the brain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hollmann, M. & Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108 (1994).

    Article  CAS  Google Scholar 

  2. Seeburg, P. H. The molecular biology of glutamate receptor channels. Trends Neurosci. 16, 359–365 (1993).

    Article  CAS  Google Scholar 

  3. Nicoll, R. A. & Malenka, R. C. Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377, 115–118 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Linden, D. J. Long-term synaptic depression in the mammalian brain. Neuron 12, 457–472 (1994).

    Article  CAS  Google Scholar 

  5. Wo, Z. G. & Oswald, R. E. Unraveling the modular design of glutamate-gated ion channels. Trends Neurosci. 18, 161–168 (1995).

    Article  CAS  Google Scholar 

  6. Craig, A. M., Blackstone, C. D., Huganir, R. L. & Banker, G. Selective clustering of glutamate and gamma-aminobutyric acid receptors opposite terminals releasing the corresponding neurotransmitters. Proc. Natl Acad. Sci. USA 91, 12373–12377 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Froehner, S. C. Regulation of ion channel distribution at synapses. Annu. Rev. Neurosci. 16, 347–368 (1993).

    Article  CAS  Google Scholar 

  8. Ehlers, M. D., Mammen, A., L., Lau, L.-F. & Huganir, R. L. Synaptic targeting of glutamate receptors. Curr. Opin. Cell Biol. 8, 490–495 (1996).

    Article  Google Scholar 

  9. Kornau, H.-C., Schenker, L. J., Kennedy, M. B. & seeburg, P. H. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269, 1737–1740 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Kim, E., Niethammer, M., Rothschild, A., Jan, Y. N. & Sheng, M. Clustering of shaker-type K+-channels by direct interaction with the PSD-95/SAP90 family of membrane-associated guanylate kinases. Nature 378, 85–88 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Cho, K.-O., Hunt, C. A. & Kennedy, M. B. The rat brain postsynaptic density fraciton contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9, 929–942 (1992).

    Article  CAS  Google Scholar 

  12. Kistner, U. et al. SAP90, a rat presynaptic protein related to the product of the Drosophila tumor suppressor gene dig-A. J. Biol. Chem. 268, 4580–4583 (1993).

    CAS  PubMed  Google Scholar 

  13. Kennedy, M. B. Origin of PDZ (DHR, GLGF) domains. Trends Biochem. Sci. 20, 350 (1995).

    Article  CAS  Google Scholar 

  14. Ponting, C. P. & Phillips, C. DHR domains in syntrophins, neuronal NO synthases and other intracellular proteins. Trends Biol. Sci. 20, 102–103 (1995).

    Article  CAS  Google Scholar 

  15. Kim, S. Tight junctions, membrane-associated guanylate kinases and cell signalling. Curr. Opin. Cell Biol. 7, 641–649 (1995).

    Article  CAS  Google Scholar 

  16. Gomperts, S. N. Clustering membrane proteins: it's all coming together with the PSD-95/SAP90 protein family. Cell 84, 659–662 (1996).

    Article  CAS  Google Scholar 

  17. Brenman, J. E. et al. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha-1-syntrophin mediated by PDZ domains. Cell 84, 757–767 (1996).

    Article  CAS  Google Scholar 

  18. Fields, S. & Song, O.-K. A novel genetic system to detect protein-protein interactions. Nature 340, 245–246 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Chevray, P. M. & Nathans, D. N. Protein interaction cloning in yeast: identification of mammalian proteins that react with the leucine zipper of jun. Proc. Natl Acad. Sci. USA 89, 5789–5793 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Stricker, N. L. et al. PDZ domain of neuronal nitric oxide synthase recognizes novel C-terminal peptide sequences. Nature Biotech. (in the press).

  21. Doyle, D. A. et al. Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell 85, 1067–1076 (1996).

    Article  CAS  Google Scholar 

  22. Kohler, M., Kornau, H.-C. & Seebug, P. H. The organization of the gene for the functionally dominant α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor subunit GluR-B. J. Biol. Chem. 269, 17367–17370 (1994).

    CAS  PubMed  Google Scholar 

  23. Gallo, V. et al. Molecular cloning and developmental analysis of a new glutamate receptor subunit isoform in cerebellum. J. Neurosci. 12, 1010–1023 (1992).

    Article  CAS  Google Scholar 

  24. Ehlers, M. D., Tingley, W. G. & Huganir, R. L. Regulated subcellular distribution of the NRl subunit of the NMDA receptor. Science 269, 1734–1737 (1995).

  25. Muller, B. M. et al. SAP102, a novel postsynaptic protein that interacts with NMDA receptor complexes in vivo. Neuron 17, 255–265 (1996).

    Article  CAS  Google Scholar 

  26. Liao, D., Hessler, N. A. & Malinow, R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocambal slice. Nature 375, 400–404 (1995).

    Article  ADS  CAS  Google Scholar 

  27. Isaac, J. T., Nicoll, R. A. & Malenka, R. C. Evidence for silent synapses: implications for the expression of LTP. Neuron 15, 427–434 (1995).

    Article  CAS  Google Scholar 

  28. Durand, G. M., Kovalchuk, Y. & Konnerth, A. Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381, 71–75 (1996).

    Article  ADS  CAS  Google Scholar 

  29. Staudinger, J., Zhou, J., Burgess, R., Elledge, S. J. & Olson, N. A perinuclear binding protein and substrate for protein kinase C isolated by the yeast two-hybrid system. J. Cell Biol. 128, 263–271 (1995).

    Article  CAS  Google Scholar 

  30. Xia, Z., Dudek, H., Miranti, C. K. & Greenberg, M. E. Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J. Neurosci. 16, 5424–5436 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, H., O'Brien, R., Fung, E. et al. GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 386, 279–284 (1997). https://doi.org/10.1038/386279a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386279a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing