Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct visuomotor transformations for reaching

Abstract

The posterior parietal cortex (PPC) is thought to have a function in the sensorimotor transformations that underlie visually guided reaching, as damage to the PPC can result in difficulty reaching to visual targets in the absence of specific visual or motor deficits1. This function is supported by findings that PPC neurons in monkeys are modulated by the direction of hand movement, as well as by visual, eye position and limb position signals2,3,4,5,6,7,8,9. The PPC could transform visual target locations from retinal coordinates to hand-centred coordinates by combining sensory signals in a serial manner to yield a body-centred representation of target location10,11,12, and then subtracting the body-centred location of the hand. We report here that in dorsal area 5 of the PPC, remembered target locations are coded with respect to both the eye and hand. This suggests that the PPC transforms target locations directly between these two reference frames. Data obtained in the adjacent parietal reach region (PRR) indicate that this transformation may be achieved by vectorially subtracting hand location from target location, with both locations represented in eye-centred coordinates.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visuomotor transformation schemes.
Figure 2: Responses of a single neuron from area 5.
Figure 3: Area 5 neuronal population activity for reaches to identical target locations in hand coordinates (a), body coordinates (b), eye coordinates (c), hand and body coordinates (d), and hand and eye coordinates (e).
Figure 4: Shifting and non-shifting response fields in the PPC.
Figure 5: Results from the second experiment.

References

  1. Rondot, P., Recondo, J. & de Ribadeau Dumas, J. Visuomotor ataxia. Brain 100, 355–376 (1977).

    Article  CAS  Google Scholar 

  2. Kalaska, J. F., Caminiti, R. & Georgopoulos, A. P. Cortical mechanisms related to the direction of two-dimensional arm movements—relations in parietal area 5 and comparison with motor cortex. Exp. Brain Res. 51, 247–260 (1983).

    Article  CAS  Google Scholar 

  3. Georgopoulos, A. P., Caminiti, R. & Kalaska, J. F. Static spatial effects in motor cortex and area 5: quantitative relations in a two-dimensional space. Exp. Brain Res. 4, 446–454 (1984).

    Google Scholar 

  4. Kalaska, J. F., Cohen, D. A. D., Prud’homme, M. & Hyde, M. L. Parietal area 5 neuronal activity encodes movement kinematics, not movement dynamics. Exp. Brain Res. 80, 351 (1990).

    Article  CAS  Google Scholar 

  5. Lacquaniti, F., Guignon, E., Bianchi, L., Ferraina, S. & Caminiti, R. Representing spatial information for limb movement: role of area 5 in the monkey. Cerebr. Cortex 5, 391–409 (1995).

    Article  CAS  Google Scholar 

  6. Kalaska, J. F. & Crammond, D. J. Deciding not to go: neuronal correlates of response selection in a go/nogo task in primate premotor and parietal cortex. Cerebr. Cortex 5, 410–428 (1995).

    Article  CAS  Google Scholar 

  7. Scott, S. H., Sergio, L. H. & Kalaska, J. F. Reaching movements with similar hand paths but different arm orientations. II. Activity of individual cells in dorsal premotor cortex and parietal area 5. J. Neurophysiol. 78, 2413–2426 (1997).

    Article  CAS  Google Scholar 

  8. Graziano, M. S. A., Cooke, D. F. & Taylor, C. S. R. Coding the location of the arm by sight. Science 290, 1782–1786 (2000).

    Article  ADS  CAS  Google Scholar 

  9. Battaglia-Mayer, A. et al. Early coding of reaching in the parietooccipital cortex. J. Neurophysiol. 83, 2374–2391 (2000).

    Article  Google Scholar 

  10. Flanders, M., Tillery, S. I. H. & Soechting, J. F. Early stages in a sensorimotor transformation. Behav. Brain Sci. 15, 309–320 (1992).

    Article  Google Scholar 

  11. Henriques, D. Y. P., Klier, E. M., Smith, M. A., Lowy, D. & Crawford, J. D. Gaze-centered remapping of remembered visual space in an open-loop pointing task. J. Neurosci. 18, 1583–1594 (1998).

    Article  CAS  Google Scholar 

  12. McIntyre, J., Stratta, F. & Lacquaniti, F. Short-term memory for reaching to visual targets: psychophysical evidence for body-centered reference frames. J. Neurosci. 18, 8423–8435 (1998).

    Article  CAS  Google Scholar 

  13. Jordan, M. I. & Rumelhart, D. E. Forward models: supervised learning with a distal teacher. Cognitive Sci. 16, 307–354 (1992).

    Article  Google Scholar 

  14. Batista, A. P., Buneo, C. A., Snyder, L. H. & Andersen, R. A. Reach plans in eye-centered coordinates. Science 285, 257–260 (1999).

    Article  CAS  Google Scholar 

  15. Strick, P. L. & Kim, C. C. Input to primate motor cortex from posterior parietal cortex (area 5). I. Demonstration by retrograde transport. Brain Res. 157, 325–330 (1978).

    Article  CAS  Google Scholar 

  16. Wiesendanger, R., Wiesendanger, M. & Ruegg, D. G. An anatomical investigation of the corticopontine projection in the primate (Macaca fascicularis and Saimiri sciureus). II. The projection from the frontal and parietal areas. Neuroscience 4, 747–765 (1979).

    Article  CAS  Google Scholar 

  17. Petrides, M. & Pandya, D. N. Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J. Comp. Neurol. 228, 105–116 (1984).

    Article  CAS  Google Scholar 

  18. Carozza, M., McIntyre, J., Zago, M. & Lacquaniti, F. Viewer-centered and body-centered frames of reference in direct visuomotor transformations. Exp. Brain Res. 129, 201–210 (1999).

    Article  Google Scholar 

  19. Andersen, R. A., Essick, G. K. & Siegel, R. M. Encoding of spatial location by posterior parietal neurons. Science 230, 456–458 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Buneo, C. A., Batista, A. P. & Andersen, R. A. Frames of reference for reach-related activity in two parietal areas. Soc. Neurosci. Abstr. 24, 262 (1998).

    Google Scholar 

  21. Desmurget, M. et al. Role of the posterior parietal cortex in updating reaching movements to a visual target. Nature Neurosci. 2, 563–567 (1999).

    Article  CAS  Google Scholar 

  22. Bullock, D., Cisek, P. & Grossberg, S. Cortical networks for control of voluntary arm movements under variable force conditions. Cerebr. Cortex 8, 48–62 (1998).

    Article  CAS  Google Scholar 

  23. Salinas, E. & Abbott, L. Transfer of coded information from sensory to motor networks. J. Neurosci. 15, 6461–6474 (1995).

    Article  CAS  Google Scholar 

  24. Deneve, S., Latham, P. E. & Pouget, A. Efficient computation and cue integration with noisy population codes. Nature Neurosci. 4, 826–831 (2001).

    Article  CAS  Google Scholar 

  25. Moran, D. W. & Schwartz, A. B. Motor cortical representation of speed and direction during reaching. J. Neurophysiol. 82, 2676–2692 (1999).

    Article  CAS  Google Scholar 

  26. Snyder, L. H., Batista, A. P. & Andersen, R. A. Coding of intention in the posterior parietal cortex. Nature 386, 167–170 (1997).

    Article  ADS  CAS  Google Scholar 

  27. Effron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (Chapman & Hall, New York, 1993).

    Book  Google Scholar 

  28. Zar, J. H. Biostatistical Analysis (Prentice-Hall, Upper Saddle River, New Jersey, 1999).

    Google Scholar 

  29. Andersen, R. A., Snyder, L. H., Li, C. S. & Stricanne, B. Coordinate transformations in the representation of spatial information. Curr. Opin. Neurobiol. 3, 171–176 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Defense Advanced Research Projects Agency (DARPA), the National Eye Institute, the Sloan-Schwartz Center for Theoretical Neurobiology, the James G. Boswell Foundation and an NIH training grant fellowship to C.A.B. We thank B. Gillikin and V. Shcherbatyuk for technical assistance; D. Dubowitz for collecting and processing the MRI data; J. Baer and J. Wynne for veterinary care; and C. Reyes-Marks for administrative assistance. We also thank J. Boline and K. Shenoy for comments.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buneo, C., Jarvis, M., Batista, A. et al. Direct visuomotor transformations for reaching. Nature 416, 632–636 (2002). https://doi.org/10.1038/416632a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416632a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing